Quantum localization bounds Trotter errors in digital quantum simulation

被引:83
|
作者
Heyl, Markus [1 ]
Hauke, Philipp [2 ,3 ]
Zoller, Peter [4 ,5 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[2] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany
[3] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
[4] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[5] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
基金
欧洲研究理事会;
关键词
TRANSITION; DYNAMICS; SYSTEM;
D O I
10.1126/sciadv.aau8342
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A fundamental challenge in digital quantum simulation (DQS) is the control of an inherent error, which appears when discretizing the time evolution of a quantum many-body system as a sequence of quantum gates, called Trotterization. Here, we show that quantum localization-by constraining the time evolution through quantum interference-strongly bounds these errors for local observables, leading to an error independent of system size and simulation time. DQS is thus intrinsically much more robust than suggested by known error bounds on the global many-body wave function. This robustness is characterized by a sharp threshold as a function of the Trotter step size, which separates a localized region with controllable Trotter errors from a quantum chaotic regime. Our findings show that DQS with comparatively large Trotter steps can retain controlled errors for local observables. It is thus possible to reduce the number of gate operations required to represent the desired time evolution faithfully.
引用
收藏
页数:8
相关论文
共 50 条
  • [22] Digital quantum simulation of gravitational optomechanics with IBM quantum computers
    Rufo, Pablo Guillermo Carmona
    Mazumdar, Anupam
    Bose, Sougato
    Sabin, Carlos
    [J]. EPJ QUANTUM TECHNOLOGY, 2024, 11 (01)
  • [23] Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
    Salathe, Y.
    Mondal, M.
    Oppliger, M.
    Heinsoo, J.
    Kurpiers, P.
    Potocnik, A.
    Mezzacapo, A.
    Heras, U. Las
    Lamata, L.
    Solano, E.
    Filipp, S.
    Wallraff, A.
    [J]. PHYSICAL REVIEW X, 2015, 5 (02):
  • [24] Symmetric Trotterization in digital quantum simulation of quantum spin dynamics
    Yeonghun Lee
    [J]. Journal of the Korean Physical Society, 2023, 82 : 479 - 485
  • [25] Optimising Trotter-Suzuki Decompositions for Quantum Simulation Using Evolutionary Strategies
    Jones, Benjamin D. M.
    White, David R.
    O'Brien, George O.
    Clark, John A.
    Campbell, Earl T.
    [J]. PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 1223 - 1231
  • [26] Reinforcement Learning for Digital Quantum Simulation
    Bolens, Adrien
    Heyl, Markus
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (11)
  • [27] Digital quantum simulation of molecular vibrations
    McArdle, Sam
    Mayorov, Alexander
    Shan, Xiao
    Benjamin, Simon
    Yuan, Xiao
    [J]. CHEMICAL SCIENCE, 2019, 10 (22) : 5725 - 5735
  • [28] Digital quantum simulation with Rydberg atoms
    H. Weimer
    M. Müller
    H. P. Büchler
    I. Lesanovsky
    [J]. Quantum Information Processing, 2011, 10
  • [29] A digital quantum simulation of the Agassi model
    Perez-Fernandez, Pedro
    Arias, Jose-Miguel
    Garcia-Ramos, Jose-Enrique
    Lamata, Lucas
    [J]. PHYSICS LETTERS B, 2022, 829
  • [30] Digital quantum simulation of NMR experiments
    Seetharam, Kushal
    Biswas, Debopriyo
    Noel, Crystal
    Risinger, Andrew
    Zhu, Daiwei
    Katz, Or
    Chattopadhyay, Sambuddha
    Cetina, Marko
    Monroe, Christopher
    Demler, Eugene
    Sels, Dries
    [J]. SCIENCE ADVANCES, 2023, 9 (46)