Symmetric Trotterization in digital quantum simulation of quantum spin dynamics

被引:0
|
作者
Yeonghun Lee
机构
[1] Incheon National University,Department of Electronics Engineering
来源
关键词
Symmetric Trotterization; Transverse-field Ising model; Digital quantum simulation; IBM Quantum Experience;
D O I
暂无
中图分类号
学科分类号
摘要
A higher-order Suzuki–Trotter decomposition or Trotterization can be exploited to mitigate the Trotter error in digital quantum simulation. This work revisits the second-order symmetric Trotterization in terms of the Trotter error, where quantum many-body spin dynamics of the transverse-field Ising model is simulated. While the work presents a pedagogical way to exploit a real quantum computer, the effectiveness of the symmetric Trotterization is evaluated in a prototype superconducting quantum device on IBM Quantum Experience. It turns out that the symmetric Trotterization does not provide higher accuracy than the first-order Trotterization in the testbed using the transverse-field Ising model. The result indicates that apart from the quantum errors, such as logical gate error and readout error, the use of a higher-order Trotterization should be circumspect, and the Trotter error would play an insignificant role in particular applications in an early stage of realized noisy intermediate-scale quantum (NISQ) devices.
引用
收藏
页码:479 / 485
页数:6
相关论文
共 50 条
  • [2] Experimental Simulation of Open Quantum System Dynamics via Trotterization
    Han, J.
    Cai, W.
    Hu, L.
    Mu, X.
    Ma, Y.
    Xu, Y.
    Wang, W.
    Wang, H.
    Song, Y. P.
    Zou, C-L
    Sun, L.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (02)
  • [3] Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
    Salathe, Y.
    Mondal, M.
    Oppliger, M.
    Heinsoo, J.
    Kurpiers, P.
    Potocnik, A.
    Mezzacapo, A.
    Heras, U. Las
    Lamata, L.
    Solano, E.
    Filipp, S.
    Wallraff, A.
    [J]. PHYSICAL REVIEW X, 2015, 5 (02):
  • [4] Ordering of Trotterization: Impact on Errors in Quantum Simulation of Electronic Structure
    Tranter, Andrew
    Love, Peter J.
    Mintert, Florian
    Wiebe, Nathan
    Coveney, Peter V.
    [J]. ENTROPY, 2019, 21 (12)
  • [5] Digital quantum simulation of molecular dynamics and control
    Magann, Alicia B.
    Grace, Matthew D.
    Rabitz, Herschel A.
    Sarovar, Mohan
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [6] Digital Quantum Simulation of Spin Systems in Superconducting Circuits
    Heras, U. Las
    Mezzacapo, A.
    Lamata, L.
    Filipp, S.
    Wallraff, A.
    Solano, E.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (20)
  • [7] Simulation of Multiple-Quantum NMR Dynamics of Spin Dimer on Quantum Computer
    Doronin, S., I
    Fel'dman, E. B.
    Kuznetsova, E., I
    Zenchuk, A., I
    [J]. APPLIED MAGNETIC RESONANCE, 2022, 53 (7-9) : 1121 - 1131
  • [8] Simulation of Multiple-Quantum NMR Dynamics of Spin Dimer on Quantum Computer
    S. I. Doronin
    E. B. Fel’dman
    E. I. Kuznetsova
    A. I. Zenchuk
    [J]. Applied Magnetic Resonance, 2022, 53 : 1121 - 1131
  • [9] Quantum spin dynamics and quantum computation
    De Raedt, H
    Hams, AH
    Michielsen, K
    Miyashita, S
    Saito, K
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 : 401 - 406
  • [10] Quantum computation and quantum spin dynamics
    De Raedt, H
    Michielsen, K
    Hams, A
    Miyashita, S
    Saito, K
    [J]. ACTA PHYSICA POLONICA B, 2001, 32 (10): : 3203 - 3210