Quantum localization bounds Trotter errors in digital quantum simulation

被引:83
|
作者
Heyl, Markus [1 ]
Hauke, Philipp [2 ,3 ]
Zoller, Peter [4 ,5 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[2] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany
[3] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
[4] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[5] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
基金
欧洲研究理事会;
关键词
TRANSITION; DYNAMICS; SYSTEM;
D O I
10.1126/sciadv.aau8342
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A fundamental challenge in digital quantum simulation (DQS) is the control of an inherent error, which appears when discretizing the time evolution of a quantum many-body system as a sequence of quantum gates, called Trotterization. Here, we show that quantum localization-by constraining the time evolution through quantum interference-strongly bounds these errors for local observables, leading to an error independent of system size and simulation time. DQS is thus intrinsically much more robust than suggested by known error bounds on the global many-body wave function. This robustness is characterized by a sharp threshold as a function of the Trotter step size, which separates a localized region with controllable Trotter errors from a quantum chaotic regime. Our findings show that DQS with comparatively large Trotter steps can retain controlled errors for local observables. It is thus possible to reduce the number of gate operations required to represent the desired time evolution faithfully.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Digital quantum simulation, Trotter errors, and quantum chaos of the kicked top
    Lukas M. Sieberer
    Tobias Olsacher
    Andreas Elben
    Markus Heyl
    Philipp Hauke
    Fritz Haake
    Peter Zoller
    [J]. npj Quantum Information, 5
  • [2] Digital quantum simulation, Trotter errors, and quantum chaos of the kicked top
    Sieberer, Lukas M.
    Olsacher, Tobias
    Elben, Andreas
    Heyl, Markus
    Hauke, Philipp
    Haake, Fritz
    Zoller, Peter
    [J]. NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [3] High-fidelity Trotter formulas for digital quantum simulation
    Liu, Yi-Xiang
    Hines, Jordan
    Li, Zhi
    Ajoy, Ashok
    Cappellaro, Paola
    [J]. PHYSICAL REVIEW A, 2020, 102 (01)
  • [4] Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation
    Babbush, Ryan
    McClean, Jarrod
    Wecker, Dave
    Aspuru-Guzik, Alan
    Wiebe, Nathan
    [J]. PHYSICAL REVIEW A, 2015, 91 (02):
  • [5] Trotter errors in digital adiabatic quantum simulation of quantum DOUBLE-STRUCK CAPITAL Z2 lattice gauge theory
    Cui, Xiaopeng
    Shi, Yu
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (30):
  • [6] Trotter Errors from Dynamical Structural Instabilities of Floquet Maps in Quantum Simulation
    Chinni, Karthik
    Munoz-Arias, Manuel H.
    Deutsch, Ivan H.
    Poggi, Pablo M.
    [J]. PRX QUANTUM, 2022, 3 (01):
  • [7] Integrable Digital Quantum Simulation: Generalized Gibbs Ensembles and Trotter Transitions
    Vernier, Eric
    Bertini, Bruno
    Giudici, Giuliano
    Piroli, Lorenzo
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (26)
  • [8] THE TROTTER STEP SIZE REQUIRED FOR ACCURATE QUANTUM SIMULATION OF QUANTUM CHEMISTRY
    Poulin, David
    Hastings, Matthew B.
    Wecker, Dave
    Wiebe, Nathan
    Doherty, Andrew C.
    Troyer, Matthias
    [J]. QUANTUM INFORMATION & COMPUTATION, 2015, 15 (5-6) : 361 - 384
  • [9] Propagation of errors and quantitative quantum simulation with quantum advantage
    Flannigan, S.
    Pearson, N.
    Low, G.
    Buyskikh, A.
    Bloch, I
    Zoller, P.
    Troyer, M.
    Daley, A.
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (04)