Propagation of errors and quantitative quantum simulation with quantum advantage

被引:13
|
作者
Flannigan, S. [1 ,2 ]
Pearson, N. [1 ,2 ,3 ,4 ]
Low, G. [5 ]
Buyskikh, A. [1 ,2 ,6 ]
Bloch, I [7 ,8 ,9 ]
Zoller, P. [10 ,11 ]
Troyer, M. [5 ]
Daley, A. [1 ,2 ]
机构
[1] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[2] Univ Strathclyde, SUPA, Glasgow G4 0NG, Lanark, Scotland
[3] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[4] Swiss Fed Inst Technol, Theoret Phys, CH-8093 Zurich, Switzerland
[5] Microsoft Quantum, Redmond, WA 98052 USA
[6] Riverlane, Cambridge CB2 3BZ, England
[7] Ludwig Maximilians Univ Munchen, D-80799 Munich, Germany
[8] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[9] Munich Ctr Quantum Sci & Technol MCQST, D-85748 Munich, Germany
[10] Univ Innsbruck, Ctr Quantum Phys, A-6020 Innsbruck, Austria
[11] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
基金
英国工程与自然科学研究理事会;
关键词
many-body quantum simulation; quantum advantage; quantum resource estimation; analogue quantum simulation; digital quantum simulation; SPIN; ATOMS; PHYSICS;
D O I
10.1088/2058-9565/ac88f5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The rapid development in hardware for quantum computing and simulation has led to much interest in problems where these devices can exceed the capabilities of existing classical computers and known methods. Approaching this for problems that go beyond testing the performance of a quantum device is an important step, and quantum simulation of many-body quench dynamics is one of the most promising candidates for early practical quantum advantage. We analyse the requirements for quantitatively reliable quantum simulation beyond the capabilities of existing classical methods for analogue quantum simulators with neutral atoms in optical lattices and trapped ions. Considering the primary sources of error in analogue devices and how they propagate after a quench in studies of the Hubbard or long-range transverse field Ising model, we identify the level of error expected in quantities we extract from experiments. We conclude for models that are directly implementable that regimes of practical quantum advantage are attained in current experiments with analogue simulators. We also identify the hardware requirements to reach the same level of accuracy with future fault-tolerant digital quantum simulation. Verification techniques are already available to test the assumptions we make here, and demonstrating these in experiments will be an important next step.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Practical quantum advantage in quantum simulation
    Daley, Andrew J.
    Bloch, Immanuel
    Kokail, Christian
    Flannigan, Stuart
    Pearson, Natalie
    Troyer, Matthias
    Zoller, Peter
    NATURE, 2022, 607 (7920) : 667 - 676
  • [2] Practical quantum advantage in quantum simulation
    Andrew J. Daley
    Immanuel Bloch
    Christian Kokail
    Stuart Flannigan
    Natalie Pearson
    Matthias Troyer
    Peter Zoller
    Nature, 2022, 607 : 667 - 676
  • [3] Quantum advantage and stability to errors in analogue quantum simulators
    Trivedi, Rahul
    Franco Rubio, Adrian
    Cirac, J. Ignacio
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [4] Quantum Simulation Logic, Oracles, and the Quantum Advantage
    Johansson, Niklas
    Larsson, Jan-Ake
    ENTROPY, 2019, 21 (08)
  • [5] Quantum Advantage via Qubit Belief Propagation
    Rengaswamy, Narayanan
    Seshadreesan, Kaushik P.
    Guha, Saikat
    Pfister, Henry D.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1824 - 1829
  • [6] Quantum localization bounds Trotter errors in digital quantum simulation
    Heyl, Markus
    Hauke, Philipp
    Zoller, Peter
    SCIENCE ADVANCES, 2019, 5 (04)
  • [7] On Rounding Errors in the Simulation of Quantum Circuits
    Klamroth, Jonas
    Beckert, Bernhard
    SERVICE-ORIENTED COMPUTING - ICSOC 2023 WORKSHOPS, 2024, 14518 : 137 - 149
  • [8] A game of quantum advantage: linking verification and simulation
    Franca, Daniel Stilck
    Garcia-Patron, Raul
    QUANTUM, 2022, 6
  • [9] Digital quantum simulation, Trotter errors, and quantum chaos of the kicked top
    Lukas M. Sieberer
    Tobias Olsacher
    Andreas Elben
    Markus Heyl
    Philipp Hauke
    Fritz Haake
    Peter Zoller
    npj Quantum Information, 5
  • [10] Digital quantum simulation, Trotter errors, and quantum chaos of the kicked top
    Sieberer, Lukas M.
    Olsacher, Tobias
    Elben, Andreas
    Heyl, Markus
    Hauke, Philipp
    Haake, Fritz
    Zoller, Peter
    NPJ QUANTUM INFORMATION, 2019, 5 (1)