Label-Free White Blood Cell Classification Using Refractive Index Tomography and Deep Learning

被引:29
|
作者
Ryu, DongHun [1 ,2 ]
Kim, Jinho [3 ]
Lim, Daejin [4 ,5 ]
Min, Hyun-Seok [6 ]
Yoo, In Young [7 ]
Cho, Duck [3 ,5 ,8 ]
Park, YongKeun [2 ,3 ,6 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Phys, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, KAIST Inst Hlth Sci & Technol, Daejeon 34141, South Korea
[3] Sungkyunkwan Univ, Samsung Adv Inst Hlth Sci & Technol, Dept Hlth Sci & Technol, Seoul 06355, South Korea
[4] Korea Univ, Dept Hlth & Safety Convergence Sci, Seoul 02841, South Korea
[5] Sungkyunkwan Univ Sch Med, Dept Lab Med & Genet, Samsung Med Ctr, Seoul 06351, South Korea
[6] Tomocube Inc, Daejeon 34051, South Korea
[7] Catholic Univ Korea, Seoul St Marys Hosp, Dept Lab Med, Coll Med, Seoul 06591, South Korea
[8] Samsung Med Ctr, Stem Cell & Regenerat Med Inst, Seoul 06531, South Korea
来源
BME FRONTIERS | 2021年 / 2021卷
基金
新加坡国家研究基金会;
关键词
MICROSCOPY;
D O I
10.34133/2021/9893804
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective and Impact Statement. We propose a rapid and accurate blood cell identification method exploiting deep learning and label-free refractive index (RI) tomography. Our computational approach that fully utilizes tomographic information of bone marrow (BM) white blood cell (WBC) enables us to not only classify the blood cells with deep learning but also quantitatively study their morphological and biochemical properties for hematology research. Introduction. Conventional methods for examining blood cells, such as blood smear analysis by medical professionals and fluorescence-activated cell sorting, require significant time, costs, and domain knowledge that could affect test results. While label-free imaging techniques that use a specimen's intrinsic contrast (e.g., multiphoton and Raman microscopy) have been used to characterize blood cells, their imaging procedures and instrumentations are relatively time-consuming and complex. Methods. The RI tomograms of the BM WBCs are acquired via Mach-Zehnder interferometer-based tomographic microscope and classified by a 3D convolutional neural network. We test our deep learning classifier for the four types of bone marrow WBC collected from healthy donors (n = 10): monocyte, myelocyte, B lymphocyte, and T lymphocyte. The quantitative parameters of WBC are directly obtained from the tomograms. Results. Our results show >99% accuracy for the binary classification of myeloids and lymphoids and >96% accuracy for the four-type classification of B and T lymphocytes, monocyte, and myelocytes. The feature learning capability of our approach is visualized via an unsupervised dimension reduction technique. Conclusion. We envision that the proposed cell classification framework can be easily integrated into existing blood cell investigation workflows, providing cost-effective and rapid diagnosis for hematologic malignancy.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Deep learning-enabled detection of rare circulating tumor cell clusters in whole blood using label-free, flow cytometry
    Vora, Nilay
    Shekar, Prashant
    Hanulia, Taras
    Esmail, Michael
    Patra, Abani
    Georgakoudi, Irene
    LAB ON A CHIP, 2024, 24 (08) : 2237 - 2252
  • [42] Application of quantitative cell imaging using label-free optical diffraction tomography
    Pack, Chan-Gi
    BIOPHYSICS AND PHYSICOBIOLOGY, 2021, 18 : 244 - 253
  • [43] Design of a label-free photonic crystal refractive index sensor for biomedical applications
    Danaie, Mohammad
    Kiani, Behnam
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2018, 31 : 89 - 98
  • [44] Hybrid plasmonic label-free multi-analyte refractive index sensor
    Kishore, K. R.
    Singh, Utkarsh
    Ayyanar, N.
    Raja, Thavasi G.
    Sanathanan, M. S.
    OPTOELECTRONICS LETTERS, 2019, 15 (04) : 269 - 272
  • [45] Hybrid plasmonic label-free multi-analyte refractive index sensor
    Kishore K.R.
    Utkarsh Singh
    Ayyanar N.
    Thavasi Raja G.
    Sanathanan M.S.
    Optoelectronics Letters, 2019, 15 (04) : 269 - 272
  • [46] Label-free histological analysis of retrieved thrombi in acute ischemic stroke using optical diffraction tomography and deep learning
    Chung, Yoonjae
    Kim, Geon
    Moon, Ah-Rim
    Ryu, DongHun
    Hugonnet, Herve
    Lee, Mahn Jae
    Shin, DongSeong
    Lee, Seung-Jae
    Lee, Eek-Sung
    Park, YongKeun
    JOURNAL OF BIOPHOTONICS, 2023, 16 (08)
  • [47] Hybrid plasmonic label-free multi-analyte refractive index sensor
    K. R. Kishore
    Singh Utkarsh
    N. Ayyanar
    G. Thavasi Raja
    M. S. Sanathanan
    Optoelectronics Letters, 2019, 15 : 269 - 272
  • [48] Semi-supervised Contrastive Learning for White Blood Cell Segmentation from Label-free Quantitative Phase Imaging
    Sengupta, Sourya
    Fanous, Michael
    Li, Hua
    Anastasio, Mark A.
    MEDICAL IMAGING 2023, 2023, 12471
  • [49] Deep learning-based label-free imaging of lymphatics and aqueous veins in the eye using optical coherence tomography
    Gong, Peijun
    Tang, Xiaolan
    Chen, Junying
    You, Haijun
    Wang, Yuxing
    Yu, Paula K.
    Yu, Dao-Yi
    Cense, Barry
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [50] Label-free cell classification in holographic flow cytometry through an unbiased learning strategy
    Ciaparrone, Gioele
    Pirone, Daniele
    Fiore, Pierpaolo
    Xin, Lu
    Xiao, Wen
    Li, Xiaoping
    Bardozzo, Francesco
    Bianco, Vittorio
    Miccio, Lisa
    Pan, Feng
    Memmolo, Pasquale
    Tagliaferri, Roberto
    Ferraro, Pietro
    LAB ON A CHIP, 2024, 24 (04) : 924 - 932