Label-Free White Blood Cell Classification Using Refractive Index Tomography and Deep Learning

被引:29
|
作者
Ryu, DongHun [1 ,2 ]
Kim, Jinho [3 ]
Lim, Daejin [4 ,5 ]
Min, Hyun-Seok [6 ]
Yoo, In Young [7 ]
Cho, Duck [3 ,5 ,8 ]
Park, YongKeun [2 ,3 ,6 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Phys, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, KAIST Inst Hlth Sci & Technol, Daejeon 34141, South Korea
[3] Sungkyunkwan Univ, Samsung Adv Inst Hlth Sci & Technol, Dept Hlth Sci & Technol, Seoul 06355, South Korea
[4] Korea Univ, Dept Hlth & Safety Convergence Sci, Seoul 02841, South Korea
[5] Sungkyunkwan Univ Sch Med, Dept Lab Med & Genet, Samsung Med Ctr, Seoul 06351, South Korea
[6] Tomocube Inc, Daejeon 34051, South Korea
[7] Catholic Univ Korea, Seoul St Marys Hosp, Dept Lab Med, Coll Med, Seoul 06591, South Korea
[8] Samsung Med Ctr, Stem Cell & Regenerat Med Inst, Seoul 06531, South Korea
来源
BME FRONTIERS | 2021年 / 2021卷
基金
新加坡国家研究基金会;
关键词
MICROSCOPY;
D O I
10.34133/2021/9893804
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective and Impact Statement. We propose a rapid and accurate blood cell identification method exploiting deep learning and label-free refractive index (RI) tomography. Our computational approach that fully utilizes tomographic information of bone marrow (BM) white blood cell (WBC) enables us to not only classify the blood cells with deep learning but also quantitatively study their morphological and biochemical properties for hematology research. Introduction. Conventional methods for examining blood cells, such as blood smear analysis by medical professionals and fluorescence-activated cell sorting, require significant time, costs, and domain knowledge that could affect test results. While label-free imaging techniques that use a specimen's intrinsic contrast (e.g., multiphoton and Raman microscopy) have been used to characterize blood cells, their imaging procedures and instrumentations are relatively time-consuming and complex. Methods. The RI tomograms of the BM WBCs are acquired via Mach-Zehnder interferometer-based tomographic microscope and classified by a 3D convolutional neural network. We test our deep learning classifier for the four types of bone marrow WBC collected from healthy donors (n = 10): monocyte, myelocyte, B lymphocyte, and T lymphocyte. The quantitative parameters of WBC are directly obtained from the tomograms. Results. Our results show >99% accuracy for the binary classification of myeloids and lymphoids and >96% accuracy for the four-type classification of B and T lymphocytes, monocyte, and myelocytes. The feature learning capability of our approach is visualized via an unsupervised dimension reduction technique. Conclusion. We envision that the proposed cell classification framework can be easily integrated into existing blood cell investigation workflows, providing cost-effective and rapid diagnosis for hematologic malignancy.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography
    Jung, JaeHwang
    Hong, Seong-Joo
    Kim, Han-Byeol
    Kim, Geon
    Lee, Moosung
    Shin, Seungwoo
    Lee, SangYun
    Kim, Dong-Jin
    Lee, Choul-Gyun
    Park, YongKeun
    SCIENTIFIC REPORTS, 2018, 8
  • [32] Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography
    JaeHwang Jung
    Seong-Joo Hong
    Han-Byeol Kim
    Geon Kim
    Moosung Lee
    Seungwoo Shin
    SangYun Lee
    Dong-Jin Kim
    Choul-Gyun Lee
    YongKeun Park
    Scientific Reports, 8
  • [33] Label-Free Bioaerosol Sensing Using Mobile Microscopy and Deep Learning
    Wu, Yichen
    Calis, Ayfer
    Luo, Yi
    Chen, Cheng
    Lutton, Maxwell
    Rivenson, Yair
    Lin, Xing
    Koydemir, Hatice Ceylan
    Zhang, Yibo
    Wang, Hongda
    Gorocs, Zoltan
    Ozcan, Aydogan
    ACS PHOTONICS, 2018, 5 (11): : 4617 - 4627
  • [34] Single cell classification of macrophage subtypes by label-free cell signatures and machine learning
    Dannhauser, David
    Rossi, Domenico
    De Gregorio, Vincenza
    Netti, Paolo Antonio
    Terrazzano, Giuseppe
    Causa, Filippo
    ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (09):
  • [35] Label-Free Sensing and Classification of Old Stored Blood
    Jun Hong Park
    Taesik Go
    Sang Joon Lee
    Annals of Biomedical Engineering, 2017, 45 : 2563 - 2573
  • [36] Label-Free Sensing and Classification of Old Stored Blood
    Park, Jun Hong
    Go, Taesik
    Lee, Sang Joon
    ANNALS OF BIOMEDICAL ENGINEERING, 2017, 45 (11) : 2563 - 2573
  • [37] Intraoperative Identification of Glioblastoma Multiforme Using Label-Free Optical Biosensors and Refractive Index Sensing
    Balaji, A.
    Suvarna, R.
    Ovalekar, R.
    Musa, M.
    Chauhan, M.
    BRITISH JOURNAL OF SURGERY, 2024, 111
  • [38] Deep-tissue label-free quantitative optical tomography
    van der Horst, Jelle
    Trull, Anna K.
    Kalkman, Jeroen
    OPTICA, 2020, 7 (12) : 1682 - 1689
  • [39] Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics
    Strohm, Eric M.
    Kolios, Michael C.
    CYTOMETRY PART A, 2015, 87A (08) : 741 - 749
  • [40] Label-free identification of cell death mechanism using scattering-based microscopy and deep learning
    Khoubafarin, Somaiyeh
    Kharel, Ashish
    Malla, Saloni
    Nath, Peuli
    Irving, Richard E.
    Kaur, Devinder
    Tiwari, Amit K.
    Ray, Aniruddha
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2023, 56 (48)