Label-Free White Blood Cell Classification Using Refractive Index Tomography and Deep Learning

被引:29
|
作者
Ryu, DongHun [1 ,2 ]
Kim, Jinho [3 ]
Lim, Daejin [4 ,5 ]
Min, Hyun-Seok [6 ]
Yoo, In Young [7 ]
Cho, Duck [3 ,5 ,8 ]
Park, YongKeun [2 ,3 ,6 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Phys, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, KAIST Inst Hlth Sci & Technol, Daejeon 34141, South Korea
[3] Sungkyunkwan Univ, Samsung Adv Inst Hlth Sci & Technol, Dept Hlth Sci & Technol, Seoul 06355, South Korea
[4] Korea Univ, Dept Hlth & Safety Convergence Sci, Seoul 02841, South Korea
[5] Sungkyunkwan Univ Sch Med, Dept Lab Med & Genet, Samsung Med Ctr, Seoul 06351, South Korea
[6] Tomocube Inc, Daejeon 34051, South Korea
[7] Catholic Univ Korea, Seoul St Marys Hosp, Dept Lab Med, Coll Med, Seoul 06591, South Korea
[8] Samsung Med Ctr, Stem Cell & Regenerat Med Inst, Seoul 06531, South Korea
来源
BME FRONTIERS | 2021年 / 2021卷
基金
新加坡国家研究基金会;
关键词
MICROSCOPY;
D O I
10.34133/2021/9893804
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective and Impact Statement. We propose a rapid and accurate blood cell identification method exploiting deep learning and label-free refractive index (RI) tomography. Our computational approach that fully utilizes tomographic information of bone marrow (BM) white blood cell (WBC) enables us to not only classify the blood cells with deep learning but also quantitatively study their morphological and biochemical properties for hematology research. Introduction. Conventional methods for examining blood cells, such as blood smear analysis by medical professionals and fluorescence-activated cell sorting, require significant time, costs, and domain knowledge that could affect test results. While label-free imaging techniques that use a specimen's intrinsic contrast (e.g., multiphoton and Raman microscopy) have been used to characterize blood cells, their imaging procedures and instrumentations are relatively time-consuming and complex. Methods. The RI tomograms of the BM WBCs are acquired via Mach-Zehnder interferometer-based tomographic microscope and classified by a 3D convolutional neural network. We test our deep learning classifier for the four types of bone marrow WBC collected from healthy donors (n = 10): monocyte, myelocyte, B lymphocyte, and T lymphocyte. The quantitative parameters of WBC are directly obtained from the tomograms. Results. Our results show >99% accuracy for the binary classification of myeloids and lymphoids and >96% accuracy for the four-type classification of B and T lymphocytes, monocyte, and myelocytes. The feature learning capability of our approach is visualized via an unsupervised dimension reduction technique. Conclusion. We envision that the proposed cell classification framework can be easily integrated into existing blood cell investigation workflows, providing cost-effective and rapid diagnosis for hematologic malignancy.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Deep Learning in Label-free Cell Classification
    Claire Lifan Chen
    Ata Mahjoubfar
    Li-Chia Tai
    Ian K. Blaby
    Allen Huang
    Kayvan Reza Niazi
    Bahram Jalali
    Scientific Reports, 6
  • [2] Deep Learning in Label-free Cell Classification
    Chen, Claire Lifan
    Mahjoubfar, Ata
    Tai, Li-Chia
    Blaby, Ian K.
    Huang, Allen
    Niazi, Kayvan Reza
    Jalali, Bahram
    SCIENTIFIC REPORTS, 2016, 6
  • [3] Label-free identification of white blood cell using optical diffraction tomography
    Yoon, Jonghee
    Kim, Kyoohyun
    Kim, Min-hyeok
    Kang, Suk-Jo
    Park, YongKeun
    QUANTITATIVE PHASE IMAGING II, 2016, 9718
  • [4] Label-free white blood cells classification using a deep feature fusion neural network
    Chen, Jin
    Fu, Liangzun
    Wei, Maoyu
    Zheng, Sikai
    Zheng, Jingwen
    Lyu, Zefei
    Huang, Xiwei
    Sun, Lingling
    HELIYON, 2024, 10 (11)
  • [5] Label-Free Identification of White Blood Cells Using Machine Learning
    Nassar, Mariam
    Doan, Minh
    Filby, Andrew
    Wolkenhauer, Olaf
    Fogg, Darin K.
    Piasecka, Justyna
    Thornton, Catherine A.
    Carpenter, Anne E.
    Summers, Huw D.
    Rees, Paul
    Hennig, Holger
    CYTOMETRY PART A, 2019, 95A (08) : 836 - 842
  • [6] Deep-Learning-Based Label-Free Segmentation of Cell Nuclei in Time-Lapse Refractive Index Tomograms
    Lee, Jimin
    Kim, Hyejin
    Cho, Hyungjoo
    Jo, Youngju
    Song, Yujin
    Ahn, Daewoong
    Lee, Kangwon
    Park, Yongkeun
    Ye, Sung-Joon
    IEEE ACCESS, 2019, 7 : 83449 - 83460
  • [7] Label-free bioanalysis of Leishmania infantum using refractive index tomography with partially coherent illumination
    Soto, Juan M.
    Mas, Alicia
    Rodrigo, Jose A.
    Alieva, Tatiana
    Dominguez-Bernal, Gustavo
    JOURNAL OF BIOPHOTONICS, 2019, 12 (09)
  • [8] Label-free characterization of white blood cells by measuring 3D refractive index maps
    Yoon, Jonghee
    Kim, Kyoohyun
    Park, HyunJoo
    Choi, Chulhee
    Jang, Seongsoo
    Park, YongKeun
    BIOMEDICAL OPTICS EXPRESS, 2015, 6 (10): : 3865 - 3875
  • [9] UNSTAINED WHITE BLOOD CELL CLASSIFICATION USING DEEP LEARNING
    Yu, Hui
    Forster, Frank
    Panambur, Adarsh Bhandary
    Merino, Anna
    Maier, Andreas
    Marquardt, Gaby
    INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2023, 45 : 132 - 133
  • [10] White Blood Cell Classification Using Deep Transfer Learning
    Sharvani, Ramineni
    Sahu, Bhawana
    Singh, Pradeep
    BIOMEDICAL ENGINEERING SCIENCE AND TECHNOLOGY, ICBEST 2023, 2024, 2003 : 220 - 232