Robust Multi-object Tracking with Semantic Color Correlation

被引:0
|
作者
Al-Shakarji, Noor M. [1 ]
Bunyak, Filiz [1 ]
Seetharaman, Guna [2 ]
Palaniappan, Kannappan [1 ]
机构
[1] Univ Missouri, Columbia, MO 65211 USA
[2] US Naval Res Lab, Washington, DC 20375 USA
关键词
MULTIPLE; ASSOCIATION; APPEARANCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-object tracking is an important computer vision task with wide variety of real-life applications from surveillance and monitoring to biomedical video analysis. Multi object tracking is a challenging problem due to complications such as partial or full occlusions, factors affecting object appearance, object interaction dynamics, etc. and computational cost. In this paper, we propose a detection-based multi-object tracking system that uses a two-step data association scheme to ensure time efficiency while preserving tracking accuracy; a robust but discriminative object appearance model that compares object color attributes using a novel color correlation cost matrix; and a framework that handles occlusions through prediction. Our experiments on UA-DETRAC multi-object tracking benchmark dataset consisting of challenging real-world traffic videos show promising results against state-of-the-art trackers.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] TrackFormer: Multi-Object Tracking with Transformers
    Meinhardt, Tim
    Kirillov, Alexander
    Leal-Taixe, Laura
    Feichtenhofer, Christoph
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8834 - 8844
  • [32] MOTS: Multi-Object Tracking and Segmentation
    Voigtlaender, Paul
    Krause, Michael
    Osep, Aljosa
    Luiten, Jonathon
    Sekar, Berin Balachandar Gnana
    Geiger, Andreas
    Leibe, Bastian
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7934 - 7943
  • [33] Research on Pedestrian Multi-Object Tracking Network Based on Multi-Order Semantic Fusion
    Liu, Cong
    Han, Chao
    [J]. WORLD ELECTRIC VEHICLE JOURNAL, 2023, 14 (10):
  • [34] Engineering statistics for multi-object tracking
    Mahler, R
    [J]. 2001 IEEE WORKSHOP ON MULTI-OBJECT TRACKING, PROCEEDINGS, 2001, : 53 - 60
  • [35] Multi-object tracking for horse racing
    Ng, Wing W. Y.
    Liu, Xuyu
    Yan, Xuli
    Tian, Xing
    Zhong, Cankun
    Kwong, Sam
    [J]. INFORMATION SCIENCES, 2023, 638
  • [36] Relational Prior for Multi-Object Tracking
    Moskalev, Artem
    Sosnovik, Ivan
    Smeulders, Arnold
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1081 - 1085
  • [37] Multi-Object Tracking with Distributed Sensing
    Dias, Ricardo
    Lau, Nuno
    Silva, Joao
    Lim, Gi Hyun
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2016, : 564 - 569
  • [38] MeMOT: Multi-Object Tracking with Memory
    Cai, Jiarui
    Xu, Mingze
    Li, Wei
    Xiong, Yuanjun
    Xia, Wei
    Tu, Zhuowen
    Soatto, Stefano
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8080 - 8090
  • [39] SiamMOT: Siamese Multi-Object Tracking
    Shuai, Bing
    Berneshawi, Andrew
    Li, Xinyu
    Modolo, Davide
    Tighe, Joseph
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12367 - 12377
  • [40] HumanTop: a multi-object tracking tabletop
    Soto Candela, Emilio
    Ortega Perez, Mario
    Marin Romero, Clemente
    Perez Lopez, David C.
    Salvador Herranz, Gustavo
    Contero, Manuel
    Alcaniz Raya, Mariano
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 70 (03) : 1837 - 1868