Monte-Carlo Tree Search for the Game of "7Wonders"

被引:0
|
作者
Robilliard, Denis [1 ]
Fonlupt, Cyril [1 ]
Teytaud, Fabien [1 ]
机构
[1] Univ Lille Nord France, ULCO, LISIC, Lille, France
来源
COMPUTER GAMES, CGW 2014 | 2014年 / 504卷
关键词
INFORMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monte-Carlo Tree Search, and in particular with the Upper Confidence Bounds formula, has provided large improvements for AI in numerous games, particularly in Go, Hex, Havannah, Amazons and Breakthrough. In this work we study this algorithm on a more complex game, the game of "7Wonders". This card game gathers together several known challenging properties, such as hidden information, multi-player and stochasticity. It also includes an inter-player trading system that induces a combinatorial search to decide which decisions are legal. Moreover, it is difficult to hand-craft an efficient evaluation function since the card values are heavily dependent upon the stage of the game and upon the other player decisions. We show that, in spite of the fact that "7 Wonders" is apparently not so related to classic abstract games, many known results still hold.
引用
下载
收藏
页码:64 / 77
页数:14
相关论文
共 50 条
  • [31] Converging to a Player Model In Monte-Carlo Tree Search
    Sarratt, Trevor
    Pynadath, David V.
    Jhala, Arnav
    2014 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2014,
  • [32] Monte-Carlo tree search as regularized policy optimization
    Grill, Jean-Bastien
    Altche, Florent
    Tang, Yunhao
    Hubert, Thomas
    Valko, Michal
    Antonoglou, Ioannis
    Munos, Remi
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [33] AIs for Dominion Using Monte-Carlo Tree Search
    Tollisen, Robin
    Jansen, Jon Vegard
    Goodwin, Morten
    Glimsdal, Sondre
    CURRENT APPROACHES IN APPLIED ARTIFICIAL INTELLIGENCE, 2015, 9101 : 43 - 52
  • [34] Parallel Monte-Carlo Tree Search with Simulation Servers
    Kato, Hideki
    Takeuchi, Ikuo
    INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2010), 2010, : 491 - 498
  • [35] A SHOGI PROGRAM BASED ON MONTE-CARLO TREE SEARCH
    Sato, Yoshikuni
    Takahashi, Daisuke
    Grimbergen, Reijer
    ICGA JOURNAL, 2010, 33 (02) : 80 - 92
  • [36] Generalized Mean Estimation in Monte-Carlo Tree Search
    Dam, Tuan
    Klink, Pascal
    D'Eramo, Carlo
    Peters, Jan
    Pajarinen, Joni
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2397 - 2404
  • [37] Automated Machine Learning with Monte-Carlo Tree Search
    Rakotoarison, Herilalaina
    Schoenauer, Marc
    Sebag, Michele
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3296 - 3303
  • [38] Can Monte-Carlo Tree Search learn to sacrifice?
    Nathan Companez
    Aldeida Aleti
    Journal of Heuristics, 2016, 22 : 783 - 813
  • [39] Monte-Carlo Tree Search Parallelisation for Computer Go
    van Niekerk, Francois
    Kroon, Steve
    van Rooyen, Gert-Jan
    Inggs, Cornelia P.
    PROCEEDINGS OF THE SOUTH AFRICAN INSTITUTE FOR COMPUTER SCIENTISTS AND INFORMATION TECHNOLOGISTS CONFERENCE, 2012, : 129 - 138
  • [40] CROSS-ENTROPY FOR MONTE-CARLO TREE SEARCH
    Chaslot, Guillaume M. J. B.
    Winands, Mark H. M.
    Szita, Istvan
    van den Herik, H. Jaap
    ICGA JOURNAL, 2008, 31 (03) : 145 - 156