On a long range variant of the discrete NLS equation and algebraic Bethe ansatz

被引:6
|
作者
Choudhury, AG
Chowdhury, AR
机构
[1] High Energy Physics Division, Department of Physics, Jadavpur University
来源
PHYSICA SCRIPTA | 1996年 / 53卷 / 02期
关键词
D O I
10.1088/0031-8949/53/2/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have constructed a new Quantum Nonlinear Schrodinger type periodic chain in which the interaction is long-range and not the usual nearest neighbour one. Using a new form of the transfer matrix with inhomogeneities at the lattice sites a long range Hamiltonian and its eigenvalues are extracted by using the algebraic Bethe ansatz.
引用
收藏
页码:129 / 132
页数:4
相关论文
共 50 条
  • [41] Discrete Miura Opers and Solutions of the Bethe Ansatz Equations
    Evgeny Mukhin
    Alexander Varchenko
    Communications in Mathematical Physics, 2005, 256 : 565 - 588
  • [42] ACTION OF THE MONODROMY MATRIX ELEMENTS IN THE GENERALIZED ALGEBRAIC BETHE ANSATZ
    Kulkarni, G.
    Slavnov, N. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 217 (03) : 1889 - 1906
  • [43] Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models
    Khachatryan, Sh.
    Ferraz, A.
    Kluemper, A.
    Sedrakyan, A.
    NUCLEAR PHYSICS B, 2015, 899 : 444 - 450
  • [44] Algebraic Bethe ansatz for the one-dimensional Bariev chain
    Zhou, HQ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (12): : L423 - L427
  • [45] Anisotropic BCS-Richardson model and algebraic Bethe ansatz
    Skrypnyk, T.
    NUCLEAR PHYSICS B, 2022, 975
  • [46] Form factors of local operators in the generalized algebraic Bethe ansatz
    Kulkarni, G.
    Slavnov, N. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 221 (02) : 1940 - 1958
  • [47] Algebraic Bethe Ansatz for the XXZ Gaudin Models with Generic Boundary
    Crampe, Nicolas
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
  • [48] Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions
    Kitanine, N.
    Kozlowski, K. K.
    Maillet, J. M.
    Slavnov, N. A.
    Terras, V.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [49] Algebraic Bethe ansatz for the Sl(2) Gaudin model with boundary
    Cirilo Antonio, N.
    Manojlovic, N.
    Ragoucy, E.
    Salom, I.
    NUCLEAR PHYSICS B, 2015, 893 : 305 - 331
  • [50] On factorized overlaps: Algebraic Bethe Ansatz, twists, and separation of variables
    Gombor, Tamas
    Pozsgay, Balazs
    NUCLEAR PHYSICS B, 2021, 967