Discrete Miura Opers and Solutions of the Bethe Ansatz Equations

被引:0
|
作者
Evgeny Mukhin
Alexander Varchenko
机构
[1] Indiana University Purdue University Indianapolis,Department of Mathematical Sciences
[2] University of North Carolina at Chapel Hill,Department of Mathematics
来源
关键词
Neural Network; Statistical Physic; Complex System; Rational Function; Nonlinear Dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
Solutions of the Bethe ansatz equations associated to the XXX model of a simple Lie algebra [inline-graphic not available: see fulltext] come in families called the populations. We prove that a population is isomorphic to the flag variety of the Langlands dual Lie algebra [inline-graphic not available: see fulltext] The proof is based on the correspondence between the solutions of the Bethe ansatz equations and special difference operators which we call the discrete Miura opers. The notion of a discrete Miura oper is one of the main results of the paper.
引用
收藏
页码:565 / 588
页数:23
相关论文
共 50 条
  • [1] Discrete Miura opers and solutions of the Bethe ansatz equations
    Mukhin, E
    Varchenko, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 256 (03) : 565 - 588
  • [2] EXCEPTIONAL SOLUTIONS TO THE BETHE ANSATZ EQUATIONS
    AVDEEV, LV
    VLADIMIROV, AA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) : 1071 - 1079
  • [3] OPERS ON THE PROJECTIVE LINE, FLAG MANIFOLDS AND BETHE ANSATZ
    Frenkel, Edward
    MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (03) : 655 - 705
  • [4] Opers on the projective line, Wronskian relations, and the Bethe Ansatz
    Brinson, Ty J.
    Sage, Daniel S.
    Zeitlin, Anton M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 202
  • [5] q-opers, QQ-systems, and Bethe Ansatz
    Frenkel, Edward
    Koroteev, Peter
    Sage, Daniel S.
    Zeitlin, Anton M.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (01) : 355 - 405
  • [6] Singular solutions to the Bethe ansatz equations and rigged configurations
    Kirillov, Anatol N.
    Sakamoto, Reiho
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (20)
  • [7] Discrete thermodynamic Bethe ansatz
    Bergère, M
    Imura, KI
    Ouvry, S
    NUCLEAR PHYSICS B, 2001, 608 (03) : 577 - 590
  • [8] Discrete thermodynamic Bethe ansatz
    Bergére, M
    Imura, KI
    Ouvry, S
    Electronic Correlations: From Meso- to Nano-Physics, 2001, : 319 - 322
  • [9] Bethe Ansatz Solutions to Quasi Exactly Solvable Difference Equations
    Sasaki, Ryu
    Yang, Wen-Li
    Zhang, Yao-Zhong
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [10] Supersymmetric Bethe ansatz and Baxter equations from discrete Hirota dynamics
    Kazakov, Vladimir
    Sorin, Alexander
    Zabrodin, Anton
    NUCLEAR PHYSICS B, 2008, 790 (03) : 345 - 413