Construction of second-order orthogonal sliced Latin hypercube designs

被引:13
|
作者
Cao, Rui-Yuan
Liu, Min-Qian [1 ]
机构
[1] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Computer experiment; Correlation; Second-order orthogonality; Space-filling; COMPUTER EXPERIMENTS;
D O I
10.1016/j.jco.2015.02.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sliced Latin hypercube designs are useful for computer experiments with qualitative and quantitative factors, model calibration, cross validation, multi-level function estimation, stochastic optimization and data pooling. Orthogonality and second-order orthogonality are crucial in identifying important inputs. Besides orthogonality, good space-filling properties are also necessary for Latin hypercube designs. In this paper, a construction method for second-order orthogonal sliced Latin hypercube designs is proposed. The constructed designs are further optimized to achieve better space-filling properties. Furthermore, the method is extended to construct nearly orthogonal sliced Latin hypercube designs. The numbers of slices and columns as well as the levels of the resulting designs are more flexible than those obtained by existing methods. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:762 / 772
页数:11
相关论文
共 50 条
  • [41] Orthogonal-maximin Latin hypercube designs
    Joseph, V. Roshan
    Hung, Ying
    STATISTICA SINICA, 2008, 18 (01) : 171 - 186
  • [42] SOME CLASSES OF ORTHOGONAL LATIN HYPERCUBE DESIGNS
    Georgiou, Stelios D.
    Efthimiou, Ifigenia
    STATISTICA SINICA, 2014, 24 (01) : 101 - 120
  • [43] Orthogonal Latin Hypercube Designs for Three Columns
    Parui, Shyamsundar
    Mandal, B. N.
    Parsad, Rajender
    Dash, Sukanta
    UTILITAS MATHEMATICA, 2018, 108 : 149 - 158
  • [44] A CENTRAL LIMIT THEOREM FOR NESTED OR SLICED LATIN HYPERCUBE DESIGNS
    He, Xu
    Qian, Peter Z. G.
    STATISTICA SINICA, 2016, 26 (03) : 1117 - 1128
  • [45] Sliced Latin hypercube designs with both branching and nested factors
    Chen, Hao
    Yang, Jinyu
    Lin, Dennis K. J.
    Liu, Min-Qian
    STATISTICS & PROBABILITY LETTERS, 2019, 146 : 124 - 131
  • [46] Flexible sliced Latin hypercube designs with slices of different sizes
    Ru Yuan
    Bing Guo
    Min-Qian Liu
    Statistical Papers, 2021, 62 : 1117 - 1134
  • [47] Flexible sliced Latin hypercube designs with slices of different sizes
    Yuan, Ru
    Guo, Bing
    Liu, Min-Qian
    STATISTICAL PAPERS, 2021, 62 (03) : 1117 - 1134
  • [48] A construction method for orthogonal Latin hypercube designs (vol 93, pg 279, 2006)
    Steinberg, David M.
    Lin, Dennis K. J.
    BIOMETRIKA, 2006, 93 (04) : 1025 - 1025
  • [49] Some new classes of orthogonal Latin hypercube designs
    Ai, Mingyao
    He, Yuanzhen
    Liu, Senmao
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (10) : 2809 - 2818
  • [50] On maximin distance and nearly orthogonal Latin hypercube designs
    Su, Zheren
    Wang, Yaping
    Zhou, Yingchun
    STATISTICS & PROBABILITY LETTERS, 2020, 166