Construction of second-order orthogonal sliced Latin hypercube designs

被引:13
|
作者
Cao, Rui-Yuan
Liu, Min-Qian [1 ]
机构
[1] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Computer experiment; Correlation; Second-order orthogonality; Space-filling; COMPUTER EXPERIMENTS;
D O I
10.1016/j.jco.2015.02.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sliced Latin hypercube designs are useful for computer experiments with qualitative and quantitative factors, model calibration, cross validation, multi-level function estimation, stochastic optimization and data pooling. Orthogonality and second-order orthogonality are crucial in identifying important inputs. Besides orthogonality, good space-filling properties are also necessary for Latin hypercube designs. In this paper, a construction method for second-order orthogonal sliced Latin hypercube designs is proposed. The constructed designs are further optimized to achieve better space-filling properties. Furthermore, the method is extended to construct nearly orthogonal sliced Latin hypercube designs. The numbers of slices and columns as well as the levels of the resulting designs are more flexible than those obtained by existing methods. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:762 / 772
页数:11
相关论文
共 50 条
  • [31] Construction of orthogonal-MaxPro Latin hypercube designs
    Wang, Yaping
    Liu, Sixu
    Xiao, Qian
    JOURNAL OF QUALITY TECHNOLOGY, 2024, 56 (04) : 342 - 354
  • [32] Resolvable orthogonal array-based uniform sliced Latin hypercube designs
    Yang, Xue
    Chen, Hao
    Liu, Min-Qian
    STATISTICS & PROBABILITY LETTERS, 2014, 93 : 108 - 115
  • [33] CONTROLLING CORRELATIONS IN SLICED LATIN HYPERCUBE DESIGNS
    Chen, Jiajie
    Qian, Peter
    STATISTICA SINICA, 2018, 28 (02) : 839 - 851
  • [34] Construction of orthogonal Latin hypercube designs with flexible run sizes
    Sun, Fasheng
    Liu, Min-Qian
    Lin, Dennis K. J.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3236 - 3242
  • [35] Construction of space-filling orthogonal Latin hypercube designs
    Li, Hui
    Yang, Liuqing
    Liu, Min-Qian
    STATISTICS & PROBABILITY LETTERS, 2022, 180
  • [36] Nested Latin Hypercube Designs with Sliced Structures
    Chen, Hao
    Liu, Min-Qian
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (22) : 4721 - 4733
  • [37] Orthogonal Latin hypercube designs from generalized orthogonal designs
    Georgiou, Stelios D.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (04) : 1530 - 1540
  • [38] A CONSTRUCTION METHOD FOR ORTHOGONAL LATIN HYPERCUBE DESIGNS WITH PRIME POWER LEVELS
    Pang, Fang
    Liu, Min-Qian
    Lin, Dennis K. J.
    STATISTICA SINICA, 2009, 19 (04) : 1721 - 1728
  • [39] BI-DIRECTIONAL SLICED LATIN HYPERCUBE DESIGNS
    Zhou, Qiang
    Jin, Tian
    Qian, Peter Z. G.
    Zhou, Shiyu
    STATISTICA SINICA, 2016, 26 (02) : 653 - 674
  • [40] ORTHOGONAL LATIN HYPERCUBE DESIGNS FOR EIGHT FACTORS
    Singh, Poonam
    Kumar, Nilesh
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2023, 19 (01): : 427 - 434