Moment Bounds for Large Autocovariance Matrices Under Dependence

被引:1
|
作者
Han, Fang [1 ]
Li, Yicheng [1 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Autocovariance matrix; Effective rank; Weak dependence; <mml; math><mml; mi>tau</mml; mi></mml; math>; documentclass[12pt]{minimal}; usepackage{amsmath}; usepackage{wasysym}; usepackage{amsfonts}; usepackage{amssymb}; usepackage{amsbsy}; usepackage{mathrsfs}; usepackage{upgreek}; setlength{; oddsidemargin}{-69pt}; begin{document}$$; tau $$; end{document}<inline-graphic xlink; href="10959_2019_922_Article_IEq1; gif; >-mixing; COMPONENT ANALYSIS; COVARIANCE; INEQUALITIES;
D O I
10.1007/s10959-019-00922-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The goal of this paper is to obtain expectation bounds for the deviation of large sample autocovariance matrices from their means under weak data dependence. While the accuracy of covariance matrix estimation corresponding to independent data has been well understood, much less is known in the case of dependent data. We make a step toward filling this gap and establish deviation bounds that depend only on the parameters controlling the "intrinsic dimension" of the data up to some logarithmic terms. Our results have immediate impacts on high-dimensional time-series analysis, and we apply them to high-dimensional linear VAR(d) model, vector-valued ARCH model, and a model used in Banna et al. (Random Matrices Theory Appl 5(2):1650006,2016).
引用
收藏
页码:1445 / 1492
页数:48
相关论文
共 50 条
  • [1] Moment Bounds for Large Autocovariance Matrices Under Dependence
    Fang Han
    Yicheng Li
    Journal of Theoretical Probability, 2020, 33 : 1445 - 1492
  • [2] Inverse moment bounds for sample autocovariance matrices based on detrended time series and their applications
    Cheng, Tzu-Chang F.
    Ing, Ching-Kang
    Yu, Shu-Hui
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 473 : 180 - 201
  • [3] LARGE COVARIANCE AND AUTOCOVARIANCE MATRICES
    Yao, Jianfeng
    JOURNAL OF TIME SERIES ANALYSIS, 2019,
  • [4] Large Covariance and Autocovariance Matrices
    Gillard, Jonathan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2019, 182 (02) : 714 - 714
  • [5] ON EIGENVALUE DISTRIBUTIONS OF LARGE AUTOCOVARIANCE MATRICES
    Yao, Jianfeng
    Yuan, Wangjun
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (05): : 3450 - 3491
  • [6] LARGE SAMPLE BEHAVIOUR OF HIGH DIMENSIONAL AUTOCOVARIANCE MATRICES
    Bhattacharjee, Monika
    Bose, Arup
    ANNALS OF STATISTICS, 2016, 44 (02): : 598 - 628
  • [7] Large sample autocovariance matrices of linear processes with heavy tails
    Heiny, Johannes
    Mikosch, Thomas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 141 : 344 - 375
  • [8] On singular value distribution of large-dimensional autocovariance matrices
    Li, Zeng
    Pan, Guangming
    Yao, Jianfeng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 137 : 119 - 140
  • [9] On the behavior of large empirical autocovariance matrices between the past and the future
    Loubaton, P.
    Tieplova, D.
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (02)
  • [10] Log determinant of large correlation matrices under infinite fourth moment
    Heiny, Johannes
    Parolya, Nestor
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 1048 - 1076