Gene Expression Network Reconstruction by LEP Method Using Microarray Data

被引:0
|
作者
You, Na [1 ]
Mou, Peng [1 ]
Qiu, Ting [1 ]
Kou, Qiang [1 ]
Zhu, Huaijin [1 ]
Chen, Yuexi [1 ]
Wang, Xueqin [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
来源
关键词
SELECTION; INFERENCE; LASSO; MODEL;
D O I
10.1100/2012/753430
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene expression network reconstruction using microarray data is widely studied aiming to investigate the behavior of a gene cluster simultaneously. Under the Gaussian assumption, the conditional dependence between genes in the network is fully described by the partial correlation coefficient matrix. Due to the high dimensionality and sparsity, we utilize the LEP method to estimate it in this paper. Compared to the existing methods, the LEP reaches the highest PPV with the sensitivity controlled at the satisfactory level. A set of gene expression data from the HapMap project is analyzed for illustration.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Clustering microarray gene expression data using enhanced harmony search
    Pandi, M.
    Premalatha, K.
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2015, 7 (05) : 296 - 306
  • [42] Cancer Classification by Sparse Representation using Microarray Gene Expression Data
    Hang, Xiyi
    2008 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS, PROCEEDINGS, 2008, : 174 - 177
  • [43] Gene selection for tumor classification using microarray gone expression data
    Yendrapalli, K.
    Basnet, R.
    Mukkamala, S.
    Sung, A. H.
    WORLD CONGRESS ON ENGINEERING 2007, VOLS 1 AND 2, 2007, : 290 - +
  • [44] Nonlinear Network Reconstruction from Gene Expression Data Using Marginal Dependencies Measured by DCOL
    Liu, Haodong
    Li, Peng
    Zhu, Mengyao
    Wang, Xiaofei
    Lu, Jianwei
    Yu, Tianwei
    PLOS ONE, 2016, 11 (07):
  • [45] On the Reconstruction of Genetic Network from Partial Microarray Data
    Chowdhury, Ahsan Raja
    Chetty, Madhu
    Xuan Nguyen Vinh
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 689 - 696
  • [46] Identification of self-regulatory network motifs in reverse engineering gene regulatory networks using microarray gene expression data
    Khalid, Mehrosh
    Khan, Sharifullah
    Ahmad, Jamil
    Shaheryar, Muhammad
    IET SYSTEMS BIOLOGY, 2019, 13 (02) : 55 - 68
  • [47] Data mining and visualisation of microarray gene expression data
    Alan Robinson
    Alvis Brazma
    Nature Genetics, 1999, 23 (Suppl 3) : 71 - 71
  • [48] Network constrained clustering for gene microarray data
    Zhu, DX
    Hero, AO
    Cheng, H
    Khanna, R
    Swaroop, A
    BIOINFORMATICS, 2005, 21 (21) : 4014 - 4020
  • [49] Meta analysis algorithms for microarray gene expression data using Gene Regulatory Networks
    Kazmi, Saira A.
    Kim, Yoo-Ah
    Shin, Dong-Guk
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2010, 4 (05) : 487 - 504
  • [50] Network constrained clustering for gene microarray data
    Zhu, DX
    Hero, AO
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 765 - 768