Gene Expression Network Reconstruction by LEP Method Using Microarray Data

被引:0
|
作者
You, Na [1 ]
Mou, Peng [1 ]
Qiu, Ting [1 ]
Kou, Qiang [1 ]
Zhu, Huaijin [1 ]
Chen, Yuexi [1 ]
Wang, Xueqin [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
来源
关键词
SELECTION; INFERENCE; LASSO; MODEL;
D O I
10.1100/2012/753430
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene expression network reconstruction using microarray data is widely studied aiming to investigate the behavior of a gene cluster simultaneously. Under the Gaussian assumption, the conditional dependence between genes in the network is fully described by the partial correlation coefficient matrix. Due to the high dimensionality and sparsity, we utilize the LEP method to estimate it in this paper. Compared to the existing methods, the LEP reaches the highest PPV with the sensitivity controlled at the satisfactory level. A set of gene expression data from the HapMap project is analyzed for illustration.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Classification of Microarray Gene Expression Data using Associative Classification
    Alagukumar, S.
    Lawrance, R.
    2016 INTERNATIONAL CONFERENCE ON COMPUTING TECHNOLOGIES AND INTELLIGENT DATA ENGINEERING (ICCTIDE'16), 2016,
  • [22] Functional clustering of genes using microarray gene expression data
    Paul Spellman
    Audrey Gasch
    Michael Eisen
    Camilla Kao
    Patrick Brown
    David Botstein
    Nature Genetics, 1999, 23 (Suppl 3) : 75 - 75
  • [23] Cancer classification based on microarray gene expression data using a principal component accumulation method
    Liu JingJing
    Cai WenSheng
    Shao XueGuang
    SCIENCE CHINA-CHEMISTRY, 2011, 54 (05) : 802 - 811
  • [24] Cancer classification based on microarray gene expression data using a principal component accumulation method
    JingJing Liu
    WenSheng Cai
    XueGuang Shao
    Science China Chemistry, 2011, 54 : 802 - 811
  • [25] A robust method for estimating gene expression states using Affymetrix microarray probe level data
    Ohtaki, Megu
    Otani, Keiko
    Hiyama, Keiko
    Kamei, Naomi
    Satoh, Kenichi
    Hiyama, Eiso
    BMC BIOINFORMATICS, 2010, 11
  • [26] A temporal precedence based clustering method for gene expression microarray data
    Ritesh Krishna
    Chang-Tsun Li
    Vicky Buchanan-Wollaston
    BMC Bioinformatics, 11
  • [27] A temporal precedence based clustering method for gene expression microarray data
    Krishna, Ritesh
    Li, Chang-Tsun
    Buchanan-Wollaston, Vicky
    BMC BIOINFORMATICS, 2010, 11
  • [28] A modified harmony search method for biclustering microarray gene expression data
    Balamurugan, R.
    Natarajan, A. M.
    Premalatha, K.
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 16 (04) : 269 - 289
  • [29] Analysis of microarray gene expression data
    Pham, Tuan D.
    Wells, Christine
    Crane, Denis I.
    CURRENT BIOINFORMATICS, 2006, 1 (01) : 37 - 53
  • [30] Improved Wavelet Neural Network for Early Diagnosis of Cancer Patients Using Microarray Gene Expression Data
    Zainuddin, Zarita
    Pauline, Ong
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 2663 - 2670