Random attractors for the stochastic coupled fractional Ginzburg-Landau equation with additive noise

被引:36
|
作者
Shu, Ji [1 ]
Li, Ping [1 ]
Zhang, Jia [1 ]
Liao, Ou [1 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R China
基金
中国国家自然科学基金;
关键词
LATTICE DYNAMICAL-SYSTEMS; WELL-POSEDNESS; ASYMPTOTIC-BEHAVIOR; DRIVEN;
D O I
10.1063/1.4934724
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the stochastic coupled fractional Ginzburg-Landau equation with additive noise. We first transform the stochastic coupled fractional Ginzburg-Landau equation into random equations whose solutions generate a random dynamical system. Then we prove the existence of random attractor for random dynamical system. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Convergence towards attractors for a degenerate Ginzburg-Landau equation
    N. I. Karachalios
    N. B. Zographopoulos
    [J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 56 : 11 - 30
  • [32] Convergence towards attractors for a degenerate Ginzburg-Landau equation
    Karachalios, NI
    Zographopoulos, NB
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (01): : 11 - 30
  • [33] Large deviations for the stochastic derivative Ginzburg-Landau equation with multiplicative noise
    Yang, Desheng
    Hou, Zhenting
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (01) : 82 - 91
  • [34] Collective chaos and noise in the globally coupled complex Ginzburg-Landau equation
    Chabanol, ML
    Hakim, V
    Rappel, WJ
    [J]. PHYSICA D, 1997, 103 (1-4): : 273 - 293
  • [35] A Liouville theorem for the fractional Ginzburg-Landau equation
    Li, Yayun
    Chen, Qinghua
    Lei, Yutian
    [J]. COMPTES RENDUS MATHEMATIQUE, 2020, 358 (06) : 727 - 731
  • [36] Fractional Ginzburg-Landau equation for fractal media
    Tarasov, VE
    Zaslavsky, GM
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 354 : 249 - 261
  • [37] A stochastic Ginzburg-Landau equation with impulsive effects
    Nguyen Tien Dung
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (09) : 1962 - 1971
  • [38] The attractor of the stochastic generalized Ginzburg-Landau equation
    BoLing Guo
    GuoLian Wang
    DongLong Li
    [J]. Science in China Series A: Mathematics, 2008, 51 : 955 - 964
  • [39] The attractor of the stochastic generalized Ginzburg-Landau equation
    GUO BoLing~1 WANG GuoLian~(2+) Li DongLong~3 1 Institute of Applied Physics and Computational Mathematics
    2 The Graduate School of China Academy of Engineering Physics
    3 Department of Information and Computer Science
    [J]. Science China Mathematics, 2008, (05) : 955 - 964
  • [40] Vortices in a stochastic parabolic Ginzburg-Landau equation
    Chugreeva, Olga
    Melcher, Christof
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (01): : 113 - 143