Approximate controllability of impulsive fractional neutral evolution equations with Riemann-Liouville fractional derivatives

被引:0
|
作者
Liu, Xianghu [1 ]
Liu, Zhenhai [2 ]
Bin, Maojun [2 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
[2] Guangxi Univ Nationalities, Coll Sci, Nanning 530006, Guangxi, Peoples R China
关键词
Impulsive fractional evolution equations; Riemann-Liouville fractional derivatives; PC1-alpha-mild solutions; Approximate controllability; BOUNDARY-VALUE-PROBLEMS; DIFFERENTIAL-EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS; BANACH-SPACES; SYSTEMS; INCLUSIONS; EXISTENCE; DELAY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the control systems of impulsive fractional neutral evolution differential equations involving Riemann-Liouville fractional derivatives in Banach spaces. Firstly, we establish the PC1-alpha-mild solution for the impulsive fractional neutral evolution differential equations. Secondly, some assumptions is made to guarantee the existence and uniqueness results of mild solutions. And under this condition, the approximate controllability of the associated impulsive fractional neutral evolution systems are formulated and proved. An example is provided to illustrate the application of the obtained theory.
引用
收藏
页码:468 / 485
页数:18
相关论文
共 50 条
  • [21] Existence and regularity of solutions for evolution equations with Riemann-Liouville fractional derivatives
    Fan, Zhenbin
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (03): : 516 - 524
  • [22] Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives
    Li Kexue
    Peng Jigen
    Jia Junxiong
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (02) : 476 - 510
  • [23] Boundary Controllability of Riemann-Liouville Fractional Semilinear Evolution Systems
    Tajani, Asmae
    El Alaoui, Fatima-Zahrae
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 198 (02) : 767 - 780
  • [24] The general solution of impulsive systems with Riemann-Liouville fractional derivatives
    Zhang, Xianmin
    Ding, Wenbin
    Peng, Hui
    Liu, Zuohua
    Shu, Tong
    [J]. OPEN MATHEMATICS, 2016, 14 : 1125 - 1137
  • [25] Existence and approximate controllability of Riemann-Liouville fractional integrodifferential systems with damping
    Haq, Abdul
    Sukavanam, N.
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 139 (139)
  • [26] LIPSCHITZ STABILITY FOR IMPULSIVE RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS
    Bohner, Martin
    Hristova, Snezhana
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (05): : 723 - 745
  • [27] CAUCHY PROBLEM FOR THE EQUATIONS WITH FRACTIONAL OF RIEMANN-LIOUVILLE DERIVATIVES
    Zabreiko, Petr P.
    Ponomareva, Svetlana, V
    [J]. DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2020, 64 (01): : 13 - 20
  • [28] On Riemann-Liouville and Caputo Impulsive Fractional Calculus
    De la Sen, M.
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 231 - 236
  • [29] Approximation with Riemann-Liouville fractional derivatives
    Anastassiou, George A.
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (03): : 357 - 365
  • [30] Fractional diffusion based on Riemann-Liouville fractional derivatives
    Hilfer, R
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16): : 3914 - 3917