Counting Cycles in Reversible Cellular Automata

被引:0
|
作者
Das, Sukanta [1 ]
Chakraborty, Avik [1 ]
Sikdar, Biplab K.
机构
[1] Bengal Engn & Sci Univ, Dept Informat Technol, Sibpur 711103, W Bengal, India
来源
CELLULAR AUTOMATA, ACRI 2012 | 2012年 / 7495卷
关键词
Reversible celular automata; cycle; reachability tree;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper reports characterization of 1-D cellular automata (CA) state space to count the cycles of reversible CA. The reachability tree provides theoretical framework to identify number of cycles in reversible CA. However, we concentrate here on a special class of reversible CA that follow right independence property. The right independence property implies, the cells of CA are independent of right neighbor. To our knowledge, no work till now has been done to find the number cycles of reversible CA by analyzing the CA state space.
引用
收藏
页码:11 / 19
页数:9
相关论文
共 50 条
  • [21] A Study on Reversible Rules of Probabilistic Cellular Automata
    Pattanayak, Anupam
    Dhal, Subhasish
    2020 IEEE CALCUTTA CONFERENCE (CALCON), 2020, : 39 - 44
  • [22] Language Recognition by Reversible Partitioned Cellular Automata
    Morita, Kenichi
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2014), 2015, 8996 : 106 - 120
  • [23] On the circuit depth of structurally reversible cellular automata
    Kari, Jarkko
    Fundamenta Informaticae, 1999, 38 (1-2): : 93 - 107
  • [24] Reversible Cellular Automata with Memory of Delay Type
    Alonso-Sanz, Ramon
    COMPLEXITY, 2014, 20 (01) : 49 - 56
  • [26] Block cipher based on reversible cellular automata
    Seredynski, M
    Bouvry, P
    NEW GENERATION COMPUTING, 2005, 23 (03) : 245 - 258
  • [27] On reversible cellular automata with finite cell array
    Inokuchi, S
    Honda, K
    Lee, HY
    Sato, T
    Mizoguchi, Y
    Kawahara, Y
    UNCONVENTIONAL COMPUTATION, PROCEEDINGS, 2005, 3699 : 130 - 141
  • [28] On computing the Lyapunov exponents of reversible cellular automata
    Johan Kopra
    Natural Computing, 2021, 20 : 273 - 286
  • [29] Reversible linear cellular automata and block permutations
    Mora, JCST
    REVISTA MEXICANA DE FISICA, 2000, 46 (01) : 14 - 23
  • [30] Block encryption using reversible cellular automata
    Seredynski, M
    Bouvry, P
    CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 785 - 792