On computing the Lyapunov exponents of reversible cellular automata

被引:0
|
作者
Johan Kopra
机构
[1] University of Turku,Department of Mathematics and Statistics
来源
Natural Computing | 2021年 / 20卷
关键词
Cellular automata; Lyapunov exponents; Reversible computation; Computability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of computing the Lyapunov exponents of reversible cellular automata (CA). We show that the class of reversible CA with right Lyapunov exponent 2 cannot be separated algorithmically from the class of reversible CA whose right Lyapunov exponents are at most 2-δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2-\delta$$\end{document} for some absolute constant δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document}. Therefore there is no algorithm that, given as an input a description of an arbitrary reversible CA F and a positive rational number ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}, outputs the Lyapunov exponents of F with accuracy ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document}. We also compute the average Lyapunov exponents (with respect to the uniform measure) of the reversible CA that perform multiplication by p in base pq for coprime p,q>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,q>1$$\end{document}.
引用
收藏
页码:273 / 286
页数:13
相关论文
共 50 条
  • [1] On computing the Lyapunov exponents of reversible cellular automata
    Kopra, Johan
    [J]. NATURAL COMPUTING, 2021, 20 (02) : 273 - 286
  • [2] The Lyapunov Exponents of Reversible Cellular Automata Are Uncomputable
    Kopra, Johan
    [J]. UNCONVENTIONAL COMPUTATION AND NATURAL COMPUTATION, UCNC 2019, 2019, 11493 : 178 - 190
  • [3] Cellular automata and Lyapunov exponents
    Tisseur, P
    [J]. NONLINEARITY, 2000, 13 (05) : 1547 - 1560
  • [4] On Lyapunov Exponents for Cellular Automata
    Courbage, Maurice
    Kaminski, Brunon
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2009, 4 (02) : 159 - 168
  • [5] Lyapunov exponents and synchronization of cellular automata
    Bagnoli, F
    Rechtman, R
    [J]. COMPLEX SYSTEMS-BOOK, 2001, 6 : 69 - 103
  • [6] DAMAGE SPREADING AND LYAPUNOV EXPONENTS IN CELLULAR AUTOMATA
    BAGNOLI, F
    RECHTMAN, R
    RUFFO, S
    [J]. PHYSICS LETTERS A, 1992, 172 (1-2) : 34 - 38
  • [7] Synchronization and maximum Lyapunov exponents of cellular automata
    Bagnoli, F
    Rechtman, R
    [J]. PHYSICAL REVIEW E, 1999, 59 (02): : R1307 - R1310
  • [8] Lyapunov exponents versus expansivity and sensitivity in cellular automata
    Finelli, M
    Manzini, G
    Margara, L
    [J]. JOURNAL OF COMPLEXITY, 1998, 14 (02) : 210 - 233
  • [9] LYAPUNOV EXPONENTS FOR ONE-DIMENSIONAL CELLULAR AUTOMATA
    SHERESHEVSKY, MA
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) : 1 - 8
  • [10] Lyapunov exponents of multi-state cellular automata
    Vispoel, M.
    Daly, A. J.
    Baetens, J. M.
    [J]. CHAOS, 2023, 33 (04)