Sentinel-2 based prediction of spruce budworm defoliation using red-edge spectral vegetation indices

被引:26
|
作者
Bhattarai, Rajeev [1 ]
Rahimzadeh-Bajgiran, Parinaz [1 ]
Weiskittel, Aaron [1 ]
MacLean, David A. [2 ]
机构
[1] Univ Maine, Sch Forest Resources, Coll Nat Sci Forestry & Agr, Orono, ME 04469 USA
[2] Univ New Brunswick, Fac Forestry & Environm Management, Fredericton, NB, Canada
基金
美国国家航空航天局; 美国食品与农业研究所;
关键词
BIOPHYSICAL VARIABLES; FOREST; CHLOROPHYLL; STANDS; DAMAGE;
D O I
10.1080/2150704X.2020.1767824
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This research compares the capabilities of various Sentinel-2-derived spectral vegetation indices (SVIs) in particular red-edge SVIs to detect and classify spruce budworm (Choristoneura fumiferana) (SBW) defoliation using Support Vector Machine (SVM) and Random Forest (RF) models. The results showed the superiority of RF in model building for defoliation detection and classification into three classes (nil, light, and moderate) with overall errors of 17% and 32%, respectively. The most important variables for the best model were Enhanced Vegetation Index 7 (EVI7), Modified Chlorophyll Absorption in Reflectance Index (MCARI), Inverted Red-Edge Chlorophyll Index (IRECI), Normalized Difference Infrared Index 11 (NDII11) and Modified Simple Ratio (MSR). Red-edge SVIs were more effective variables for light defoliation detection compared to traditional SVIs such as Normalized Difference Vegetation Index (NDVI) and EVI8. These findings can help improve current remote sensing-based SBW defoliation detection and monitoring.
引用
收藏
页码:777 / 786
页数:10
相关论文
共 50 条
  • [41] Exploring vegetation indices adequate in detecting twister disease of onion using Sentinel-2 imagery
    Isip, M. F.
    Alberto, R. T.
    Biagtan, A. R.
    [J]. SPATIAL INFORMATION RESEARCH, 2020, 28 (03) : 369 - 375
  • [42] Novel Vegetation Indices for Cotton Boll Opening Status Estimation Using Sentinel-2 Data
    Ren, Yu
    Meng, Yanhua
    Huang, Wenjiang
    Ye, Huichun
    Han, Yuxing
    Kong, Weiping
    Zhou, Xianfeng
    Cui, Bei
    Xing, Naichen
    Guo, Anting
    Geng, Yun
    [J]. REMOTE SENSING, 2020, 12 (11)
  • [44] Exploring vegetation indices adequate in detecting twister disease of onion using Sentinel-2 imagery
    M. F. Isip
    R. T. Alberto
    A. R. Biagtan
    [J]. Spatial Information Research, 2020, 28 : 369 - 375
  • [45] Convolutional neural networks for water segmentation using sentinel-2 red, green, blue (RGB) composites and derived spectral indices
    James, Thomas
    Schillaci, Calogero
    Lipani, Aldo
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (14) : 5342 - 5369
  • [46] Monitoring of changes in vegetation status through integration of time series of hyper-sharpened Sentinel-2 red-edge bands and information-theoretic textural features of Sentinel-1 SAR backscatter
    Aiazzi, B.
    Alparone, L.
    Arienzo, A.
    Garzelli, A.
    Zoppetti, C.
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [47] Development of a Multi-Scale Tomato Yield Prediction Model in Azerbaijan Using Spectral Indices from Sentinel-2 Imagery
    Psiroukis, Vasilis
    Darra, Nicoleta
    Kasimati, Aikaterini
    Trojacek, Pavel
    Hasanli, Gunay
    Fountas, Spyros
    [J]. REMOTE SENSING, 2022, 14 (17)
  • [48] Landsat-8 vs. Sentinel-2: examining the added value of sentinel-2's red-edge bands to land-use and land-cover mapping in Burkina Faso
    Forkuor, Gerald
    Dimobe, Kangbeni
    Serme, Idriss
    Tondoh, Jerome Ebagnerin
    [J]. GISCIENCE & REMOTE SENSING, 2018, 55 (03) : 331 - 354
  • [49] Evaluation of Several Spectral Indices for Estimation of Canola Yield using Sentinel-2 Sensor Images
    Loveimi, N.
    Akram, A.
    Bagheri, N.
    Hajiahmad, A.
    [J]. JOURNAL OF AGRICULTURAL MACHINERY, 2021, 11 (02) : 447 - 464
  • [50] OPTIMIZATION OF SPECTRAL INDICES FOR THE ESTIMATION OF LEAF AREA INDEX BASED ON SENTINEL-2 MULTISPECTRAL IMAGERY
    Wang, Zihao
    Sun, Yuanheng
    Zhang, Tianyuan
    Ren, Huazhong
    Qin, Qiming
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5441 - 5444