Sentinel-2 based prediction of spruce budworm defoliation using red-edge spectral vegetation indices

被引:27
|
作者
Bhattarai, Rajeev [1 ]
Rahimzadeh-Bajgiran, Parinaz [1 ]
Weiskittel, Aaron [1 ]
MacLean, David A. [2 ]
机构
[1] Univ Maine, Sch Forest Resources, Coll Nat Sci Forestry & Agr, Orono, ME 04469 USA
[2] Univ New Brunswick, Fac Forestry & Environm Management, Fredericton, NB, Canada
基金
美国国家航空航天局; 美国食品与农业研究所;
关键词
BIOPHYSICAL VARIABLES; FOREST; CHLOROPHYLL; STANDS; DAMAGE;
D O I
10.1080/2150704X.2020.1767824
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This research compares the capabilities of various Sentinel-2-derived spectral vegetation indices (SVIs) in particular red-edge SVIs to detect and classify spruce budworm (Choristoneura fumiferana) (SBW) defoliation using Support Vector Machine (SVM) and Random Forest (RF) models. The results showed the superiority of RF in model building for defoliation detection and classification into three classes (nil, light, and moderate) with overall errors of 17% and 32%, respectively. The most important variables for the best model were Enhanced Vegetation Index 7 (EVI7), Modified Chlorophyll Absorption in Reflectance Index (MCARI), Inverted Red-Edge Chlorophyll Index (IRECI), Normalized Difference Infrared Index 11 (NDII11) and Modified Simple Ratio (MSR). Red-edge SVIs were more effective variables for light defoliation detection compared to traditional SVIs such as Normalized Difference Vegetation Index (NDVI) and EVI8. These findings can help improve current remote sensing-based SBW defoliation detection and monitoring.
引用
收藏
页码:777 / 786
页数:10
相关论文
共 50 条
  • [21] Evaluating annual spruce budworm defoliation using change detection of vegetation indices calculated from satellite hyperspectral imagery
    Donovan, Shawn D.
    MacLean, David A.
    Zhang, Yun
    Lavigne, Michael B.
    Kershaw, John A.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 253
  • [22] Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3
    Clevers, J. G. P. W.
    Gitelson, A. A.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 23 : 344 - 351
  • [23] Red-Edge Normalised Difference Vegetation Index (NDVI705) from Sentinel-2 imagery to assess post-fire regeneration
    Evangelides, Christos
    Nobajas, Alexandre
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2020, 17
  • [24] Spectral harmonization and red edge prediction of Landsat-8 to Sentinel-2 using land cover optimized multivariate regressors
    Scheffler, Daniel
    Frantz, David
    Segl, Karl
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 241
  • [25] Spectral harmonization and red edge prediction of Landsat-8 to Sentinel-2 using land cover optimized multivariate regressors
    Scheffler, Daniel
    Frantz, David
    Segl, Karl
    [J]. Remote Sensing of Environment, 2020, 241
  • [26] Narrow band based and broadband derived vegetation indices using Sentinel-2 Imagery to estimate vegetation biomass
    Imran, A. B.
    Khan, K.
    Ali, N.
    Ahmad, N.
    Ali, A.
    Shah, K.
    [J]. GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM, 2020, 6 (01): : 97 - 108
  • [27] Evaluation of red-edge features for identifying subtropical tree species based on Sentinel-2 and Gaofen-6 time series
    Yu, Wanwan
    Zhao, Ping
    Xu, Kaijian
    Zhao, Yuejiao
    Shen, Pengju
    Ma, Jingjing
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (08) : 3003 - 3027
  • [28] Assessing Leaf Biomass of Agave sisalana Using Sentinel-2 Vegetation Indices
    Vuorinne, Ilja
    Heiskanen, Janne
    Pellikka, Petri K. E.
    [J]. REMOTE SENSING, 2021, 13 (02) : 1 - 21
  • [29] Generating Red-Edge Images at 3 M Spatial Resolution by Fusing Sentinel-2 and Planet Satellite Products
    Li, Wei
    Jiang, Jiale
    Guo, Tai
    Zhou, Meng
    Tang, Yining
    Wang, Ying
    Zhang, Yu
    Cheng, Tao
    Zhu, Yan
    Cao, Weixing
    Yao, Xia
    [J]. REMOTE SENSING, 2019, 11 (12)
  • [30] Evaluation of Sentinel-2 vegetation indices for prediction of LAI, fAPAR and fCover of winter wheat in Bulgaria
    Kamenova, Ilina
    Dimitrov, Petar
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (sup1) : 89 - 108