On monotonicity conditions for the free boundary in the two-phase Stefan problem

被引:0
|
作者
Petrova, A. G. [1 ]
机构
[1] Altai State Univ, Barnaul 656099, Russia
关键词
monotonicity; free boundary; Stefan problem;
D O I
10.1134/S0001434613050179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:789 / 791
页数:3
相关论文
共 50 条
  • [31] Classical two-phase Stefan problem for spheres
    McCue, Scott W.
    Wu, Bisheng
    Hill, James M.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2096): : 2055 - 2076
  • [32] Convergence of the two-phase Stefan problem to the one-phase problem
    Stoth, BE
    QUARTERLY OF APPLIED MATHEMATICS, 1997, 55 (01) : 113 - 126
  • [33] Regularity of the Free Boundary in a Two-phase Semilinear Problem in Two Dimensions
    Lindgren, Erik
    Petrosyan, Arshak
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (07) : 3397 - 3417
  • [34] On the numerical solution of two-phase Stefan problems with heat-flux boundary conditions
    Mitchell, S. L.
    Vynnycky, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 : 49 - 64
  • [36] On a two-phase free boundary problem ruled by the infinity Laplacian
    Araujo, Damiao J.
    Teixeira, Eduardo, V
    Urbano, Jose Miguel
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 245 (02) : 773 - 785
  • [37] A minimum problem with two-phase free boundary in Orlicz spaces
    Zheng, Jun
    Zhang, Zhihua
    Zhao, Peihao
    MONATSHEFTE FUR MATHEMATIK, 2013, 172 (3-4): : 441 - 475
  • [38] Two-phase almost minimizers for a fractional free boundary problem
    Allen, Mark
    Garcia, Mariana Smit Vega
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (03):
  • [39] On a two-phase free boundary problem ruled by the infinity Laplacian
    Damião J. Araújo
    Eduardo V. Teixeira
    José Miguel Urbano
    Israel Journal of Mathematics, 2021, 245 : 773 - 785
  • [40] SMOOTHNESS OF FREE BOUNDARY IN ONE PHASE STEFAN PROBLEM
    KINDERLEHRER, D
    NIRENBERG, L
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (03) : 257 - 282