DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping

被引:75
|
作者
Bollmann, Steffen [1 ]
Rasmussen, Kasper Gade Botker [2 ]
Kristensen, Mads [2 ]
Blendal, Rasmus Guldhammer [2 ]
Ostergaard, Lasse Riis [2 ]
Plocharski, Maciej [2 ]
O'Brien, Kieran [1 ,3 ]
Langkammer, Christian [4 ]
Janke, Andrew [1 ]
Barth, Markus [1 ]
机构
[1] Univ Queensland, Ctr Adv Imaging, Bldg 57 Univ Dr, Brisbane, Qld 4072, Australia
[2] Aalborg Univ, Dept Hlth Sci & Technol, Fredrik Bajers Vej 7, DK-9000 Aalborg, Denmark
[3] Siemens Healthcare Pty Ltd, Brisbane, Qld, Australia
[4] Med Univ Graz, Dept Neurol, Auenbruggerpl 22, A-8036 Graz, Austria
基金
澳大利亚研究理事会; 奥地利科学基金会;
关键词
Quantitative susceptibility mapping; Dipole inversion; Ill-posed problem; Deep learning; MAGNETIC-SUSCEPTIBILITY; HUMAN BRAIN; IN-VIVO; NEURAL-NETWORKS; HIGH-FIELD; PHASE; MRI; MULTIPLE; IRON; QSM;
D O I
10.1016/j.neuroimage.2019.03.060
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Quantitative susceptibility mapping (QSM) is based on magnetic resonance imaging (MRI) phase measurements and has gained broad interest because it yields relevant information on biological tissue properties, predominantly myelin, iron and calcium in vivo. Thereby, QSM can also reveal pathological changes of these key components in widespread diseases such as Parkinson's disease, Multiple Sclerosis, or hepatic iron overload. While the ill-posed field-to-source-inversion problem underlying QSM is conventionally assessed by the means of regularization techniques, we trained a fully convolutional deep neural network - DeepQSM - to directly invert the magnetic dipole kernel convolution. DeepQSM learned the physical forward problem using purely synthetic data and is capable of solving the ill-posed field-to-source inversion on in vivo MRI phase data. The magnetic susceptibility maps reconstructed by DeepQSM enable identification of deep brain substructures and provide information on their respective magnetic tissue properties. In summary, DeepQSM can invert the magnetic dipole kernel convolution and delivers robust solutions to this ill-posed problem.
引用
收藏
页码:373 / 383
页数:11
相关论文
共 50 条
  • [1] Bayesian Learning of Probabilistic Dipole Inversion for Quantitative Susceptibility Mapping
    Zhang, Jinwei
    Zhang, Hang
    Sabuncu, Mert
    Spincemaille, Pascal
    Thanh Nguyen
    Wang, Yi
    [J]. MEDICAL IMAGING WITH DEEP LEARNING, VOL 121, 2020, 121 : 892 - 902
  • [2] Quantitative Susceptibility Mapping Using a Superposed Dipole Inversion Method: Application to Intracranial Hemorrhage
    Sun, Hongfu
    Kate, Mahesh
    Gioia, Laura C.
    Emery, Derek J.
    Butcher, Kenneth
    Wilman, Alan H.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2016, 76 (03) : 781 - 791
  • [3] Data-Driven Quantitative Susceptibility Mapping Using Loss Adaptive Dipole Inversion (LADI)
    Kamesh Iyer, Srikant
    Moon, Brianna F.
    Josselyn, Nicholas
    Ruparel, Kosha
    Roalf, David
    Song, Jae W.
    Guiry, Samantha
    Ware, Jeffrey B.
    Kurtz, Robert M.
    Chawla, Sanjeev
    Nabavizadeh, S. Ali
    Witschey, Walter R.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (03) : 823 - 835
  • [4] Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM)
    Polak, Daniel
    Chatnuntawech, Itthi
    Yoon, Jaeyeon
    Iyer, Siddharth Srinivasan
    Milovic, Carlos
    Lee, Jongho
    Bachert, Peter
    Adalsteinsson, Elfar
    Setsompop, Kawin
    Bilgic, Berkin
    [J]. NMR IN BIOMEDICINE, 2020, 33 (12)
  • [5] Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map
    Liu, Jing
    Liu, Tian
    de Rochefort, Ludovic
    Ledoux, James
    Khalidov, Ildar
    Chen, Weiwei
    Tsiouris, A. John
    Wisnieff, Cynthia
    Spincemaille, Pascal
    Prince, Martin R.
    Wang, Yi
    [J]. NEUROIMAGE, 2012, 59 (03) : 2560 - 2568
  • [6] Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method
    Sun, Hongfu
    Ma, Yuhan
    MacDonald, M. Ethan
    Pike, G. Bruce
    [J]. NEUROIMAGE, 2018, 179 : 166 - 175
  • [7] Accuracy of the Morphology Enabled Dipole Inversion (MEDI) Algorithm for Quantitative Susceptibility Mapping in MRI
    Liu, Tian
    Xu, Weiyu
    Spincemaille, Pascal
    Avestimehr, A. Salman
    Wang, Yi
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (03) : 816 - 824
  • [8] Quantitative Susceptibility Mapping Using the Multiple Dipole-inversion Combination with k-space Segmentation Method
    Sato, Ryota
    Shirai, Toru
    Taniguchi, Yo
    Murase, Takenori
    Bito, Yoshitaka
    Ochi, Hisaaki
    [J]. MAGNETIC RESONANCE IN MEDICAL SCIENCES, 2017, 16 (04) : 340 - 350
  • [9] Overview of quantitative susceptibility mapping using deep learning: Current status, challenges and opportunities
    Jung, Woojin
    Bollmann, Steffen
    Lee, Jongho
    [J]. NMR IN BIOMEDICINE, 2022, 35 (04)
  • [10] Deep grey matter quantitative susceptibility mapping from small spatial coverages using deep learning
    Zhu, Xuanyu
    Gao, Yang
    Liu, Feng
    Crozier, Stuart
    Sun, Hongfu
    [J]. ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2022, 32 (02): : 188 - 198