DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping

被引:75
|
作者
Bollmann, Steffen [1 ]
Rasmussen, Kasper Gade Botker [2 ]
Kristensen, Mads [2 ]
Blendal, Rasmus Guldhammer [2 ]
Ostergaard, Lasse Riis [2 ]
Plocharski, Maciej [2 ]
O'Brien, Kieran [1 ,3 ]
Langkammer, Christian [4 ]
Janke, Andrew [1 ]
Barth, Markus [1 ]
机构
[1] Univ Queensland, Ctr Adv Imaging, Bldg 57 Univ Dr, Brisbane, Qld 4072, Australia
[2] Aalborg Univ, Dept Hlth Sci & Technol, Fredrik Bajers Vej 7, DK-9000 Aalborg, Denmark
[3] Siemens Healthcare Pty Ltd, Brisbane, Qld, Australia
[4] Med Univ Graz, Dept Neurol, Auenbruggerpl 22, A-8036 Graz, Austria
基金
澳大利亚研究理事会; 奥地利科学基金会;
关键词
Quantitative susceptibility mapping; Dipole inversion; Ill-posed problem; Deep learning; MAGNETIC-SUSCEPTIBILITY; HUMAN BRAIN; IN-VIVO; NEURAL-NETWORKS; HIGH-FIELD; PHASE; MRI; MULTIPLE; IRON; QSM;
D O I
10.1016/j.neuroimage.2019.03.060
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Quantitative susceptibility mapping (QSM) is based on magnetic resonance imaging (MRI) phase measurements and has gained broad interest because it yields relevant information on biological tissue properties, predominantly myelin, iron and calcium in vivo. Thereby, QSM can also reveal pathological changes of these key components in widespread diseases such as Parkinson's disease, Multiple Sclerosis, or hepatic iron overload. While the ill-posed field-to-source-inversion problem underlying QSM is conventionally assessed by the means of regularization techniques, we trained a fully convolutional deep neural network - DeepQSM - to directly invert the magnetic dipole kernel convolution. DeepQSM learned the physical forward problem using purely synthetic data and is capable of solving the ill-posed field-to-source inversion on in vivo MRI phase data. The magnetic susceptibility maps reconstructed by DeepQSM enable identification of deep brain substructures and provide information on their respective magnetic tissue properties. In summary, DeepQSM can invert the magnetic dipole kernel convolution and delivers robust solutions to this ill-posed problem.
引用
收藏
页码:373 / 383
页数:11
相关论文
共 50 条
  • [31] Mapping Deep Gray Matter Iron in Multiple Sclerosis by Using Quantitative Magnetic Susceptibility
    Barkhof, Frederik
    Thomas, David L.
    [J]. RADIOLOGY, 2018, 289 (02) : 497 - 498
  • [32] Evaluation of deep gray matter for early brain development using quantitative susceptibility mapping
    Otani, Sayo
    Fushimi, Yasutaka
    Iwanaga, Kogoro
    Tomotaki, Seiichi
    Shimotsuma, Taiki
    Nakajima, Satoshi
    Sakata, Akihiko
    Okuchi, Sachi
    Hinoda, Takuya
    Wicaksono, Krishna Pandu
    Takita, Junko
    Kawai, Masahiko
    Nakamoto, Yuji
    [J]. EUROPEAN RADIOLOGY, 2023, 33 (06) : 4488 - 4499
  • [33] Evaluation of deep gray matter for early brain development using quantitative susceptibility mapping
    Sayo Otani
    Yasutaka Fushimi
    Kogoro Iwanaga
    Seiichi Tomotaki
    Taiki Shimotsuma
    Satoshi Nakajima
    Akihiko Sakata
    Sachi Okuchi
    Takuya Hinoda
    Krishna Pandu Wicaksono
    Junko Takita
    Masahiko Kawai
    Yuji Nakamoto
    [J]. European Radiology, 2023, 33 : 4488 - 4499
  • [34] Landslide susceptibility mapping using deep learning models in Ardabil province, Iran
    Hamedi, Hossein
    Alesheikh, Ali Asghar
    Panahi, Mahdi
    Lee, Saro
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (12) : 4287 - 4310
  • [35] Landslide susceptibility mapping using deep learning models in Ardabil province, Iran
    Hossein Hamedi
    Ali Asghar Alesheikh
    Mahdi Panahi
    Saro Lee
    [J]. Stochastic Environmental Research and Risk Assessment, 2022, 36 : 4287 - 4310
  • [36] Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field
    de Rochefort, Ludovic
    Brown, Ryan
    Prince, Martin R.
    Wang, Yi
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2008, 60 (04) : 1003 - 1009
  • [37] Effective Digitized Spatial Size of Unit Dipole Field in Quantitative Susceptibility Mapping
    Murashima, Mai
    Ueno, Tomohiro
    Sugimoto, Naozo
    [J]. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 1049 - 1052
  • [38] Deep learning-based landslide susceptibility mapping
    Azarafza, Mohammad
    Azarafza, Mehdi
    Akgun, Haluk
    Atkinson, Peter M.
    Derakhshani, Reza
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [39] A deep learning ensemble model for wildfire susceptibility mapping
    Bjanes, Alexandra
    de la Fuente, Rodrigo
    Mena, Pablo
    [J]. ECOLOGICAL INFORMATICS, 2021, 65
  • [40] Deep learning-based landslide susceptibility mapping
    Mohammad Azarafza
    Mehdi Azarafza
    Haluk Akgün
    Peter M. Atkinson
    Reza Derakhshani
    [J]. Scientific Reports, 11