Bayesian Learning of Probabilistic Dipole Inversion for Quantitative Susceptibility Mapping

被引:0
|
作者
Zhang, Jinwei [1 ,2 ]
Zhang, Hang [2 ,3 ]
Sabuncu, Mert [1 ,2 ,3 ]
Spincemaille, Pascal [2 ]
Thanh Nguyen [2 ]
Wang, Yi [1 ,2 ]
机构
[1] Cornell Univ, Dept Biomed Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Weill Med Coll, Dept Radiol, New York, NY 10021 USA
[3] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY USA
基金
美国国家科学基金会;
关键词
Bayesian deep learning; variational inference; convolutional neural network; quantitative susceptibility mapping; IMAGE; INFERENCE; COSMOS; MAP;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A learning-based posterior distribution estimation method, Probabilistic Dipole Inversion (PDI), is proposed to solve quantitative susceptibility mapping (QSM) inverse problem in MRI with uncertainty estimation. A deep convolutional neural network (CNN) is used to represent the multivariate Gaussian distribution as the approximated posterior distribution of susceptibility given the input measured field. In PDI, such CNN is firstly trained on healthy subjects' data with labels by maximizing the posterior Gaussian distribution loss function as used in Bayesian deep learning. When tested on new dataset without any label, PDI updates the pre-trained CNN's weights in an unsupervised fashion by minimizing the Kullback{Leibler divergence between the approximated posterior distribution represented by CNN and the true posterior distribution given the likelihood distribution from known physical model and pre-defined prior distribution. Based on our experiments, PDI provides additional uncertainty estimation compared to the conventional MAP approach, meanwhile addressing the potential discrepancy issue of CNN when test data deviates from training dataset.
引用
收藏
页码:892 / 902
页数:11
相关论文
共 50 条
  • [1] DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping
    Bollmann, Steffen
    Rasmussen, Kasper Gade Botker
    Kristensen, Mads
    Blendal, Rasmus Guldhammer
    Ostergaard, Lasse Riis
    Plocharski, Maciej
    O'Brien, Kieran
    Langkammer, Christian
    Janke, Andrew
    Barth, Markus
    [J]. NEUROIMAGE, 2019, 195 : 373 - 383
  • [2] Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM)
    Polak, Daniel
    Chatnuntawech, Itthi
    Yoon, Jaeyeon
    Iyer, Siddharth Srinivasan
    Milovic, Carlos
    Lee, Jongho
    Bachert, Peter
    Adalsteinsson, Elfar
    Setsompop, Kawin
    Bilgic, Berkin
    [J]. NMR IN BIOMEDICINE, 2020, 33 (12)
  • [3] Quantitative Susceptibility Mapping Using a Superposed Dipole Inversion Method: Application to Intracranial Hemorrhage
    Sun, Hongfu
    Kate, Mahesh
    Gioia, Laura C.
    Emery, Derek J.
    Butcher, Kenneth
    Wilman, Alan H.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2016, 76 (03) : 781 - 791
  • [4] Accuracy of the Morphology Enabled Dipole Inversion (MEDI) Algorithm for Quantitative Susceptibility Mapping in MRI
    Liu, Tian
    Xu, Weiyu
    Spincemaille, Pascal
    Avestimehr, A. Salman
    Wang, Yi
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (03) : 816 - 824
  • [5] Coherence enhancement in quantitative susceptibility mapping by means of anisotropic weighting in morphology enabled dipole inversion
    Kee, Youngwook
    Cho, Junghun
    Deh, Kofi
    Liu, Zhe
    Spincemaille, Pascal
    Wang, Yi
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (02) : 1172 - 1180
  • [6] Data-Driven Quantitative Susceptibility Mapping Using Loss Adaptive Dipole Inversion (LADI)
    Kamesh Iyer, Srikant
    Moon, Brianna F.
    Josselyn, Nicholas
    Ruparel, Kosha
    Roalf, David
    Song, Jae W.
    Guiry, Samantha
    Ware, Jeffrey B.
    Kurtz, Robert M.
    Chawla, Sanjeev
    Nabavizadeh, S. Ali
    Witschey, Walter R.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (03) : 823 - 835
  • [7] Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map
    Liu, Jing
    Liu, Tian
    de Rochefort, Ludovic
    Ledoux, James
    Khalidov, Ildar
    Chen, Weiwei
    Tsiouris, A. John
    Wisnieff, Cynthia
    Spincemaille, Pascal
    Prince, Martin R.
    Wang, Yi
    [J]. NEUROIMAGE, 2012, 59 (03) : 2560 - 2568
  • [8] Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method
    Sun, Hongfu
    Ma, Yuhan
    MacDonald, M. Ethan
    Pike, G. Bruce
    [J]. NEUROIMAGE, 2018, 179 : 166 - 175
  • [9] Multi-echo dipole inversion for magnetic susceptibility mapping
    Kames, Christian
    Doucette, Jonathan
    Rauscher, Alexander
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2023, 89 (06) : 2391 - 2401
  • [10] A new discrete dipole kernel for quantitative susceptibility mapping
    Milovic, Carlos
    Acosta-Cabronero, Julio
    Miguel Pinto, Jose
    Mattern, Hendrik
    Andia, Marcelo
    Uribe, Sergio
    Tejos, Cristian
    [J]. MAGNETIC RESONANCE IMAGING, 2018, 51 : 7 - 13