Thermal optimization of a natural draft wet cooling tower

被引:29
|
作者
Williamson, N. [1 ]
Behnia, M.
Armfield, S. W. [1 ]
机构
[1] Univ Sydney, Sch Mech & Aerosp Engn, Sydney, NSW 2006, Australia
关键词
Poppe method; Merkel method; cooling tower; optimization;
D O I
10.1002/er.1456
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study attempts to quantify the potential improvement in a natural draft wet cooling tower (NDWCT) performance that can be attained by optimizing the fill and water distribution profiles across the tower and to provide designers with the modelling tools for such an investigation. A simple two-dimensional (2D) model is described, which allows rapid evaluation of NDWCT performance for use with an optimization procedure. This model has been coupled with an evolutionary optimization algorithm to determine the optimal fill shape and water distribution profile to maximize the cooling range of a typical NDWCT. The results are compared against a 2D axisymmetric numerical model. The extended I D model is found to significantly reduce computational time compared with the numerical model, allowing a wide range of parameters to be tested rapidly with reasonable accuracy. The results show that the optimal layout differs significantly from a uniform profile, with both the water flow rate and the fill depth decreasing towards the centre of the tower where the air is warmer with reduced cooling potential. The overall improvement in the tower cooling range is very low under the design conditions tested, due largely to the highly coupled nature of the airflow and heat transfer in the tower. It is concluded that any design modifications of the type considered would need to be carefully optimized to have any possibility of improving performance. Copyright (c) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:1349 / 1361
页数:13
相关论文
共 50 条
  • [21] Concept of CFD model of natural draft wet-cooling tower flow
    Hyhlik, T.
    EFM13 - EXPERIMENTAL FLUID MECHANICS 2013, 2014, 67
  • [22] NUMERICAL SIMULATION OF FLOW FIELDS IN A NATURAL DRAFT WET-COOLING TOWER
    YANG Xiang-liang Heze Power Plant
    JournalofHydrodynamics, 2007, (06) : 762 - 768
  • [23] Comparative study on the cooling characteristics of high level water collecting natural draft wet cooling tower and the usual cooling tower
    Zhao, Yuanbin
    Sun, Fengzhong
    Long, Guoqing
    Huang, Xiaofeng
    Huang, Wenqiang
    Lyv, Dongqiang
    ENERGY CONVERSION AND MANAGEMENT, 2016, 116 : 150 - 164
  • [24] Influence mechanism of the louver on the thermal performance of the mechanical draft wet cooling tower
    Deng, Weipeng
    Sun, Fengzhong
    Wang, Runchen
    He, Keting
    APPLIED THERMAL ENGINEERING, 2023, 230
  • [25] Numerical study on heat and mass transfer performance of a natural draft wet cooling tower based on baffle optimization
    Li, Yaode
    Wu, Yanyu
    Zhong, Yi
    Zhang, Sannan
    APPLIED THERMAL ENGINEERING, 2024, 245
  • [26] Field test study on thermal and ventilation performance for natural draft wet cooling tower after structural improvement
    Zhang, Zhengqing
    Gao, Ming
    Wang, Mingyong
    Guan, Hongjun
    Dang, Zhigang
    He, Suoying
    Sun, Fengzhong
    APPLIED THERMAL ENGINEERING, 2019, 155 : 305 - 312
  • [27] Optimization design of solar enhanced natural draft dry cooling tower
    Zou, Zheng
    Guan, Zhiqiang
    Gurgenci, Hal
    ENERGY CONVERSION AND MANAGEMENT, 2013, 76 : 945 - 955
  • [28] Water Consumption Comparison Between a Natural Draft Wet Cooling Tower and a Natural Draft Hybrid Cooling TowerAn Annual Simulation for Luoyang Conditions
    Xia, Lin
    Li, Jishun
    Ma, Wei
    Gurgenci, Hal
    Guan, Zhiqiang
    Wang, Pei
    HEAT TRANSFER ENGINEERING, 2017, 38 (11-12) : 1034 - 1043
  • [29] Field test of the effect of crosswind on ventilation performance of a natural draft wet cooling tower
    Sun, F. (sfzh@sdu.edu.cn), 2012, Chinese Society for Electrical Engineering (32):
  • [30] Evaporative cooling of water in a natural draft cooling tower
    Fisenko, SP
    Petruchik, AI
    Solodukhin, AD
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (23) : 4683 - 4694