Spectral Analysis of Certain Schrodinger Operators

被引:18
|
作者
Ismail, Mourad E. H. [1 ,3 ]
Koelink, Erik [2 ,3 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[2] Radboud Univ Nijmegen, IMAPP, FNWI, NL-6525 AL Nijmegen, Netherlands
[3] City Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
关键词
J-matrix method; discrete quantum mechanics; diagonalization; tridiagonalization; Laguere polynomials; Meixner polynomials; ultraspherical polynomials; continuous dual Hahn polynomials; ultraspherical (Gegenbauer) polynomials; Al-Salam-Chihara polynomials; birth and death process polynomials; shape invariance; zeros; L-2 SERIES SOLUTION; MATRIX; POLYNOMIALS; LIE; ALGEBRA;
D O I
10.3842/SIGMA.2012.061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The J-matrix method is extended to difference and q-difference operators and is applied to several explicit differential, difference, q-difference and second order Askey-Wilson type operators. The spectrum and the spectral measures are discussed in each case and the corresponding eigenfunction expansion is written down explicitly in most cases. In some cases we encounter new orthogonal polynomials with explicit three term recurrence relations where nothing is known about their explicit representations or orthogonality measures. Each model we analyze is a discrete quantum mechanical model in the sense of Odake and Sasaki [J. Phys. A: Math. Theor. 44 (2011), 353001, 47 pages].
引用
收藏
页数:19
相关论文
共 50 条
  • [41] SPECTRAL RIGIDITY FOR RADIAL SCHRODINGER-OPERATORS
    CARLSON, R
    SHUBIN, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 113 (02) : 338 - 354
  • [42] Spectral Properties of Continuum Fibonacci Schrodinger Operators
    Fillman, Jake
    Mei, May
    ANNALES HENRI POINCARE, 2018, 19 (01): : 237 - 247
  • [43] SPECTRAL UNIQUENESS OF RADIAL SEMICLASSICAL SCHRODINGER OPERATORS
    Datchev, Kiril
    Hezari, Hamid
    Ventura, Ivan
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (03) : 521 - 529
  • [44] Spectral properties of a class of reflectionless Schrodinger operators
    Gesztesy, Fritz
    Yuditskii, Peter
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (02) : 486 - 527
  • [45] Extremal spectral gaps for periodic Schrodinger operators
    Kao, Chiu-Yen
    Osting, Braxton
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
  • [46] Spectral properties of Schrodinger operators on decorated graphs
    Brüning, J
    Geiler, VA
    Lobanov, IS
    MATHEMATICAL NOTES, 2005, 77 (5-6) : 858 - 861
  • [47] Spectral Properties of Schrodinger Operators on Decorated Graphs
    J. Bruning
    V. A. Geiler
    I. S. Lobanov
    Mathematical Notes, 2005, 77 : 858 - 861
  • [48] Spectral Properties of Schrodinger Operators on Perturbed Lattices
    Ando, Kazunori
    Isozaki, Hiroshi
    Morioka, Hisashi
    ANNALES HENRI POINCARE, 2016, 17 (08): : 2103 - 2171
  • [49] Some spectral equivalences between Schrodinger operators
    Dunning, C.
    Hibberd, K. E.
    Links, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (31)
  • [50] A Characterization of Hardy Spaces Associated with Certain Schrodinger Operators
    Dziubanski, Jacek
    Zienkiewicz, Jacek
    POTENTIAL ANALYSIS, 2014, 41 (03) : 917 - 930