Spectral Analysis of Certain Schrodinger Operators
被引:18
|
作者:
Ismail, Mourad E. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
City Univ Hong Kong, Hong Kong, Hong Kong, Peoples R ChinaUniv Cent Florida, Dept Math, Orlando, FL 32816 USA
Ismail, Mourad E. H.
[1
,3
]
Koelink, Erik
论文数: 0引用数: 0
h-index: 0
机构:
Radboud Univ Nijmegen, IMAPP, FNWI, NL-6525 AL Nijmegen, Netherlands
City Univ Hong Kong, Hong Kong, Hong Kong, Peoples R ChinaUniv Cent Florida, Dept Math, Orlando, FL 32816 USA
Koelink, Erik
[2
,3
]
机构:
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[2] Radboud Univ Nijmegen, IMAPP, FNWI, NL-6525 AL Nijmegen, Netherlands
[3] City Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
J-matrix method;
discrete quantum mechanics;
diagonalization;
tridiagonalization;
Laguere polynomials;
Meixner polynomials;
ultraspherical polynomials;
continuous dual Hahn polynomials;
ultraspherical (Gegenbauer) polynomials;
Al-Salam-Chihara polynomials;
birth and death process polynomials;
shape invariance;
zeros;
L-2 SERIES SOLUTION;
MATRIX;
POLYNOMIALS;
LIE;
ALGEBRA;
D O I:
10.3842/SIGMA.2012.061
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The J-matrix method is extended to difference and q-difference operators and is applied to several explicit differential, difference, q-difference and second order Askey-Wilson type operators. The spectrum and the spectral measures are discussed in each case and the corresponding eigenfunction expansion is written down explicitly in most cases. In some cases we encounter new orthogonal polynomials with explicit three term recurrence relations where nothing is known about their explicit representations or orthogonality measures. Each model we analyze is a discrete quantum mechanical model in the sense of Odake and Sasaki [J. Phys. A: Math. Theor. 44 (2011), 353001, 47 pages].
机构:
Univ Paris 07, Inst Math Jussieu, CNRS, UMR 7586,UFR Math, F-75251 Paris 05, FranceUniv Paris 07, Inst Math Jussieu, CNRS, UMR 7586,UFR Math, F-75251 Paris 05, France
de Monvel, AB
Sahbani, J
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 07, Inst Math Jussieu, CNRS, UMR 7586,UFR Math, F-75251 Paris 05, FranceUniv Paris 07, Inst Math Jussieu, CNRS, UMR 7586,UFR Math, F-75251 Paris 05, France
Sahbani, J
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE,
1998,
326
(09):
: 1145
-
1150