Maxwell-Chern-Simons theory is free for marginally noncommutative spacetimes

被引:7
|
作者
Ghosh, S [1 ]
机构
[1] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700108, W Bengal, India
关键词
noncommutative gauge theory; Seiberg-Witten map; duality; Maxwell-Chern-Simons theory; self-dual model;
D O I
10.1016/j.physletb.2003.12.061
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We have conclusively established the duality between noncommutative Maxwell-Chem-Simons theory and self-dual model, the latter in ordinary spacetime, to the first nontrivial order in the noncommutativity parameter theta(munu), with theta(0i) = 0. This shows that the former theory is free for marginally noncommutative spacetimes. A theta-generalized covariant mapping between the variables of the two models in question has been derived explicitly, that converts one model to the other, including the symplectic structure and action. (C) 2004 Published by Elsevier B.V.
引用
收藏
页码:347 / 352
页数:6
相关论文
共 50 条
  • [1] Finiteness of the noncommutative supersymmetric Maxwell-Chern-Simons theory
    Ferrari, A. F.
    Gomes, M.
    Nascimento, J. R.
    Petrov, A. Yu.
    Da Silva, A. J.
    Silva, E. O.
    [J]. PHYSICAL REVIEW D, 2008, 77 (02):
  • [2] On duality of the noncommutative supersymmetric Maxwell-Chern-Simons theory
    Gomes, M.
    Nascimento, J. R.
    Petrov, A. Yu.
    da Silva, A. J.
    Silva, E. O.
    [J]. PHYSICS LETTERS B, 2008, 666 (01) : 91 - 94
  • [3] Noncommutative Maxwell-Chern-Simons theory, duality and a new noncommutative Chern-Simons theory in d=3
    Dayi, ÖF
    [J]. PHYSICS LETTERS B, 2003, 560 (3-4) : 239 - 244
  • [4] On duality of the noncommutative extension of the Maxwell-Chern-Simons model
    Guimaraes, MS
    Rodrigues, DC
    Wotzasek, C
    Noronha, JL
    [J]. PHYSICS LETTERS B, 2005, 605 (3-4) : 419 - 425
  • [5] Vortices in the Maxwell-Chern-Simons theory
    Ricciardi, T
    Tarantello, G
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2000, 53 (07) : 811 - 851
  • [6] Maxwell-Chern-Simons theory with a boundary
    Blasi, A.
    Maggiore, N.
    Magnoli, N.
    Storace, S.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (16)
  • [7] Quasi-hole solutions in finite noncommutative Maxwell-Chern-Simons theory
    Lambert, Jules
    Paranjape, Manu B.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (05):
  • [8] Q balls in Maxwell-Chern-Simons theory
    Deshaies-Jacques, M.
    MacKenzie, R.
    [J]. PHYSICAL REVIEW D, 2006, 74 (02):
  • [9] Holographic reduction of Maxwell-Chern-Simons theory
    Maggiore, Nicola
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (07):
  • [10] Holographic reduction of Maxwell-Chern-Simons theory
    Nicola Maggiore
    [J]. The European Physical Journal Plus, 133