On duality of the noncommutative supersymmetric Maxwell-Chern-Simons theory

被引:8
|
作者
Gomes, M. [2 ]
Nascimento, J. R. [1 ,2 ]
Petrov, A. Yu. [1 ]
da Silva, A. J. [2 ]
Silva, E. O. [1 ]
机构
[1] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, PB, Brazil
[2] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1016/j.physletb.2008.06.053
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the possibility of establishing the dual equivalence between the noncommutative supersymmetric Maxwell-Chern-Simons theory and the noncommutative supersymmetric self-dual theory. It turns to be that whereas in the commutative case the Maxwell-Chern-Simons theory can be mapped into the sum of the self-dual theory and the Chern-Simons theory, in the noncommutative case such a mapping is possible only for the theory with modified Maxwell term. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 94
页数:4
相关论文
共 50 条
  • [1] Finiteness of the noncommutative supersymmetric Maxwell-Chern-Simons theory
    Ferrari, A. F.
    Gomes, M.
    Nascimento, J. R.
    Petrov, A. Yu.
    Da Silva, A. J.
    Silva, E. O.
    PHYSICAL REVIEW D, 2008, 77 (02):
  • [2] Noncommutative Maxwell-Chern-Simons theory, duality and a new noncommutative Chern-Simons theory in d=3
    Dayi, ÖF
    PHYSICS LETTERS B, 2003, 560 (3-4) : 239 - 244
  • [3] On duality of the noncommutative extension of the Maxwell-Chern-Simons model
    Guimaraes, MS
    Rodrigues, DC
    Wotzasek, C
    Noronha, JL
    PHYSICS LETTERS B, 2005, 605 (3-4) : 419 - 425
  • [4] QUANTIZED AND THERMALIZED SUPERSYMMETRIC MAXWELL-CHERN-SIMONS THEORY
    LEBLANC, M
    THOMAZ, MT
    PHYSICAL REVIEW D, 1992, 46 (02): : 726 - 736
  • [5] Maxwell-Chern-Simons theory is free for marginally noncommutative spacetimes
    Ghosh, S
    PHYSICS LETTERS B, 2004, 583 (3-4) : 347 - 352
  • [6] Vortices in the Maxwell-Chern-Simons theory
    Ricciardi, T
    Tarantello, G
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2000, 53 (07) : 811 - 851
  • [7] Maxwell-Chern-Simons theory with a boundary
    Blasi, A.
    Maggiore, N.
    Magnoli, N.
    Storace, S.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (16)
  • [8] QUANTUM ASPECTS OF SUPERSYMMETRIC MAXWELL-CHERN-SIMONS SOLITONS
    LEE, BH
    MIN, HS
    PHYSICAL REVIEW D, 1995, 51 (08): : 4458 - 4473
  • [9] Quasi-hole solutions in finite noncommutative Maxwell-Chern-Simons theory
    Lambert, Jules
    Paranjape, Manu B.
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (05):
  • [10] Q balls in Maxwell-Chern-Simons theory
    Deshaies-Jacques, M.
    MacKenzie, R.
    PHYSICAL REVIEW D, 2006, 74 (02):