Maxwell-Chern-Simons theory is free for marginally noncommutative spacetimes

被引:7
|
作者
Ghosh, S [1 ]
机构
[1] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700108, W Bengal, India
关键词
noncommutative gauge theory; Seiberg-Witten map; duality; Maxwell-Chern-Simons theory; self-dual model;
D O I
10.1016/j.physletb.2003.12.061
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We have conclusively established the duality between noncommutative Maxwell-Chem-Simons theory and self-dual model, the latter in ordinary spacetime, to the first nontrivial order in the noncommutativity parameter theta(munu), with theta(0i) = 0. This shows that the former theory is free for marginally noncommutative spacetimes. A theta-generalized covariant mapping between the variables of the two models in question has been derived explicitly, that converts one model to the other, including the symplectic structure and action. (C) 2004 Published by Elsevier B.V.
引用
收藏
页码:347 / 352
页数:6
相关论文
共 50 条
  • [41] Quantization effects for Maxwell-Chern-Simons vortices
    Han, Jongmin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) : 265 - 274
  • [42] STATISTICS TRANSMUTATION IN MAXWELL-CHERN-SIMONS THEORIES
    MATSUYAMA, T
    [J]. PHYSICAL REVIEW D, 1990, 42 (10): : 3469 - 3475
  • [43] Maxwell-Chern-Simons vortices and holographic superconductors
    Tallarita, Gianni
    Thomas, Steven
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (12):
  • [44] Maxwell-Chern-Simons vortices and holographic superconductors
    Gianni Tallarita
    Steven Thomas
    [J]. Journal of High Energy Physics, 2010
  • [45] EQUIVALENCE OF THE MAXWELL-CHERN-SIMONS THEORY AND A SELF-DUAL MODEL
    BANERJEE, R
    ROTHE, HJ
    ROTHE, KD
    [J]. PHYSICAL REVIEW D, 1995, 52 (06): : 3750 - 3752
  • [46] Maxwell-chern-simons Q-balls
    Deshaies-Jacques, M.
    MacKenzie, R.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2007, 85 (06) : 693 - 698
  • [47] Repulsive Maxwell-Chern-Simons Casimir effect
    Alves, Danilo T.
    Granhen, Edney R.
    de Medeiros Neto, J. F.
    Perez, Silvana
    [J]. PHYSICS LETTERS A, 2010, 374 (21) : 2113 - 2116
  • [48] Quantum dissipation of planar harmonic systems: Maxwell-Chern-Simons theory
    Valido, Antonio A.
    [J]. PHYSICAL REVIEW D, 2019, 99 (01)
  • [49] ON THE QUANTIZATION OF THE MASSIVE MAXWELL-CHERN-SIMONS MODEL
    Sararu, Silviu-Constantin
    [J]. ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (1-2): : 253 - 259
  • [50] Casimir effect of the Maxwell-Chern-Simons field
    Zhang, ZH
    Li, ZP
    [J]. HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 1998, 22 (01): : 87 - 91