Close Sound Source Localization incorporating Semi-Supervised Variational Bayesian NMF

被引:0
|
作者
Kumon, Makoto [1 ]
Washizaki, Kai [2 ]
Nakadai, Kazuhiro [3 ,4 ]
机构
[1] Kumamoto Univ, Int Res Org Adv Sci, Fac Adv Sci & Technol, Chuo Ku, 2-39-1 Kurokami, Kumamoto 8608555, Japan
[2] Kumamoto Univ, Grad Sch Sci & Technol, Chuo Ku, 2-39-1 Kurokami, Kumamoto 8608555, Japan
[3] Tokyo Inst Technol, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528552, Japan
[4] Honda Res Inst Japan, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528552, Japan
关键词
ENHANCEMENT;
D O I
10.1109/sii.2019.8700459
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes a method to integrate a sound source separation method based on Nonnegative Matrix Factorization approach that is able to cope with partially known acoustic characteristics, and a sound source localization method with a frequency bin selection utilizing the separated signals. The proposed method is effective in the case when the target sound source locates close to a noise source, and the noise characteristics are available owing to the sound sound separation suppress the effect of noise. Numerical simulations showed that the proposed system succeeded to localize two sources of 5 degrees interval, which validates the approach.
引用
收藏
页码:313 / 318
页数:6
相关论文
共 50 条
  • [21] Semi-supervised Parsing with Variational Autoencoding Parser
    Zhang, Xiao
    Goldwasser, Dan
    [J]. 16TH INTERNATIONAL CONFERENCE ON PARSING TECHNOLOGIES AND IWPT 2020 SHARED TASK ON PARSING INTO ENHANCED UNIVERSAL DEPENDENCIES, 2020, : 40 - 47
  • [22] Variational Autoencoder for Semi-Supervised Text Classification
    Xu, Weidi
    Sun, Haoze
    Deng, Chao
    Tan, Ying
    [J]. THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3358 - 3364
  • [23] Variational Sequential Labelers for Semi-Supervised Learning
    Chen, Mingda
    Tang, Qingming
    Livescu, Karen
    Gimpel, Kevin
    [J]. 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 215 - 226
  • [24] Unified Robust Semi-Supervised Variational Autoencoder
    Chen, Xu
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [25] Variational Information Bottleneck for Semi-Supervised Classification
    Voloshynovskiy, Slava
    Taran, Olga
    Kondah, Mouad
    Holotyak, Taras
    Rezende, Danilo
    [J]. ENTROPY, 2020, 22 (09)
  • [26] Variational Pretraining for Semi-supervised Text Classification
    Gururangan, Suchin
    Dang, Tam
    Card, Dallas
    Smith, Noah A.
    [J]. 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 5880 - 5894
  • [27] Semi-supervised Variational Autoencoder for Survival Prediction
    Palsson, Sveinn
    Cerri, Stefano
    Dittadi, Andrea
    Van Leemput, Koen
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 124 - 134
  • [28] Infinite Variational Autoencoder for Semi-Supervised Learning
    Abbasnejad, M. Ehsan
    Dick, Anthony
    van den Hengel, Anton
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 781 - 790
  • [29] A Semi-supervised Learning Based on Variational Autoencoder for Visual-Based Robot Localization
    Liang, Kaiyun
    He, Fazhi
    Zhu, Yuanyuan
    Gao, Xiaoxin
    [J]. COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT I, 2022, 1491 : 615 - 627
  • [30] Deep Bayesian Active Semi-Supervised Learning
    Rottmann, Matthias
    Kahl, Karsten
    Gottschalk, Hanno
    [J]. 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 158 - 164