Variational Pretraining for Semi-supervised Text Classification

被引:0
|
作者
Gururangan, Suchin [1 ]
Dang, Tam [2 ]
Card, Dallas [3 ]
Smith, Noah A. [1 ,2 ]
机构
[1] Allen Inst Artificial Intelligence, Seattle, WA 98103 USA
[2] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
[3] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce VAMPIRE,(1) a lightweight pre-training framework for effective text classification when data and computing resources are limited. We pretrain a unigram document model as a variational autoencoder on in-domain, unlabeled data and use its internal states as features in a downstream classifier. Empirically, we show the relative strength of VAMPIRE against computationally expensive contextual embeddings and other popular semi-supervised baselines under low resource settings. We also find that fine-tuning to in-domain data is crucial to achieving decent performance from contextual embeddings when working with limited supervision. We accompany this paper with code to pretrain and use VAMPIRE embeddings in downstream tasks.
引用
收藏
页码:5880 / 5894
页数:15
相关论文
共 50 条
  • [1] Variational Autoencoder for Semi-Supervised Text Classification
    Xu, Weidi
    Sun, Haoze
    Deng, Chao
    Tan, Ying
    [J]. THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3358 - 3364
  • [2] Semi-Supervised Text Classification via Self-Pretraining
    Karisani, Payam
    Karisani, Negin
    [J]. WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 40 - 48
  • [3] An Improved Semi-supervised Variational Autoencoder with Gate Mechanism for Text Classification
    Ye, Haiming
    Zhang, Weiwen
    Nie, Mengna
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (10)
  • [4] Semi-supervised collaborative text classification
    Jin, Rong
    Wu, Ming
    Sukthankar, Rahul
    [J]. MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 600 - +
  • [5] An Exploration of Semi-supervised Text Classification
    Lien, Henrik
    Biermann, Daniel
    Palumbo, Fabrizio
    Goodwin, Morten
    [J]. ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022, 2022, 1600 : 477 - 488
  • [6] Variational Information Bottleneck for Semi-Supervised Classification
    Voloshynovskiy, Slava
    Taran, Olga
    Kondah, Mouad
    Holotyak, Taras
    Rezende, Danilo
    [J]. ENTROPY, 2020, 22 (09)
  • [7] A review of semi-supervised learning for text classification
    José Marcio Duarte
    Lilian Berton
    [J]. Artificial Intelligence Review, 2023, 56 : 9401 - 9469
  • [8] Text Classification Using Semi-Supervised Clustering
    Zhang, Wen
    Yoshida, Taketoshi
    Tang, Xijin
    [J]. 2009 INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, PROCEEDINGS, 2009, : 197 - 200
  • [9] Semi-Supervised Text Classification With Universum Learning
    Liu, Chien-Liang
    Hsaio, Wen-Hoar
    Lee, Chia-Hoang
    Chang, Tao-Hsing
    Kuo, Tsung-Hsun
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (02) : 462 - 473
  • [10] TEXT CLASSIFICATION BASED ON SEMI-SUPERVISED LEARNING
    Vo Duy Thanh
    Vo Trung Hung
    Pham Minh Tuan
    Doan Van Ban
    [J]. 2013 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2013, : 232 - 236