Crawling and turning in a minimal reaction-diffusion cell motility model: Coupling cell shape and biochemistry

被引:66
|
作者
Camley, Brian A. [1 ]
Zhao, Yanxiang [2 ]
Li, Bo [3 ,4 ]
Levine, Herbert [5 ]
Rappel, Wouter-Jan [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] George Washington Univ, Dept Math, Washington, DC 20052 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Grad Program Quantitat Biol, La Jolla, CA 92093 USA
[5] Rice Univ, Ctr Theoret Biol Phys, Dept Bioengn, Houston, TX 77005 USA
来源
PHYSICAL REVIEW E | 2017年 / 95卷 / 01期
基金
美国国家科学基金会;
关键词
SELF-POLARIZATION; PHASE-SEPARATION; FLOW; INFORMATION; MECHANISMS; MOVEMENT; DYNAMICS; POLARITY; MOTION;
D O I
10.1103/PhysRevE.95.012401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a minimal model of a crawling eukaryotic cell with a chemical polarity controlled by a reaction-diffusion mechanism describing Rho GTPase dynamics. The size, shape, and speed of the cell emerge from the combination of the chemical polarity, which controls the locations where actin polymerization occurs, and the physical properties of the cell, including its membrane tension. We find in our model both highly persistent trajectories, in which the cell crawls in a straight line, and turning trajectories, where the cell transitions from crawling in a line to crawling in a circle. We discuss the controlling variables for this turning instability and argue that turning arises from a coupling between the reaction-diffusion mechanism and the shape of the cell. This emphasizes the surprising features that can arise from simple links between cell mechanics and biochemistry. Our results suggest that similar instabilities may be present in a broad class of biochemical descriptions of cell polarity.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Sensing the shape of a cell with reaction diffusion and energy minimization
    Singh, Amit R.
    Leadbetter, Travis
    Camley, Brian A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (31)
  • [42] A programmable reaction-diffusion system for spatiotemporal cell signaling circuit design
    Rajasekaran, Rohith
    Chang, Chih-Chia
    Weix, Elliott W. Z.
    Galateo, Thomas M.
    Coyle, Scott M.
    CELL, 2024, 187 (02) : 345 - 359.e16
  • [43] Grid-free stochastic simulations of reaction-diffusion processes at cell-cell contacts
    Prüstel, Thorsten
    Meier-Schellersheim, Martin
    arXiv, 2023,
  • [44] A mass conserved reaction-diffusion system captures properties of cell polarity
    Otsuji, Mikiya
    Ishihara, Shuji
    Co, Carl
    Kaibuchi, Kozo
    Mochizuki, Atsushi
    Kuroda, Shinya
    PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (06) : 1040 - 1054
  • [45] Bio-inspired compact cell circuit for reaction-diffusion systems
    Karahaliloglu, K
    Balkir, S
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2005, 52 (09) : 558 - 562
  • [46] Identification of EEG signals in epilepsy by cell outputs of Reaction-Diffusion Networks
    Gollas, F.
    Tetzlaff, R.
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 5185 - 5188
  • [47] THE PROOF OF AN INEQUALITY ARISING IN A REACTION-DIFFUSION STUDY IN A SMALL-CELL
    JUMARHON, B
    MCKEE, S
    TANG, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 51 (01) : 99 - 101
  • [48] A new method for choosing the computational cell in stochastic reaction-diffusion systems
    Kang, Hye-Won
    Zheng, Likun
    Othmer, Hans G.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (6-7) : 1017 - 1099
  • [49] Model on cell movement, growth, differentiation and de-differentiation: Reaction-diffusion equation and wave propagation
    Mao-Xiang Wang
    Yu-Jung Li
    Pik-Yin Lai
    C. K. Chan
    The European Physical Journal E, 2013, 36
  • [50] A metabolic reaction-diffusion model for PKCα translocation via PIP2 hydrolysis in an endothelial cell
    Sera, Toshihiro
    Higa, Shiro
    Yan Zeshu
    Takahi, Kyosuke
    Miyamoto, Satoshi
    Fujiwara, Tetsuya
    Yokota, Hideo
    Sasaki, Saori
    Kudo, Susumu
    BIOCHEMICAL JOURNAL, 2020, 477 (20) : 4071 - 4084