Identification of EEG signals in epilepsy by cell outputs of Reaction-Diffusion Networks

被引:0
|
作者
Gollas, F. [1 ]
Tetzlaff, R. [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Appl Phys, D-6000 Frankfurt, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cellular Nonlinear Networks (CNN) are characterized by local couplings of comparatively simple dynamical systems. In spite their compact structure, CNN exhibit complex phenomena like nonlinear wave propagation or chaotic behavior. The well studied Reaction-Diffusion Systems are widely used to describe phenomena like pattern formation and other processes in the fields of biology, chemistry and physics. By spatial discretization Reaction-Diffusion Partial Differential equations can be mapped to the cellular structures of Reaction-Diffusion Cellular Nonlinear Networks (RD-CNN). In this contribution simple RD-CNN models are determined in numerical optimization procedures in order to approximate short segments of EEG signals. Thereby effects of higher order nonlinear cell couplings are studied. Parameter changes of the RD-CNN models may be used for precursor detection of impending seizures in epilepsy.
引用
收藏
页码:5185 / 5188
页数:4
相关论文
共 50 条
  • [1] Identification Method for the Analysis of EEG Signals in Epilepsy with Reaction-Diffusion Networks
    Gollas, F.
    Tetzlaff, R.
    ADVANCES IN RADIO SCIENCE, 2007, 5 : 253 - 258
  • [2] Analysis of Local Activity in Reaction-Diffusion Networks: EEG Signals in Epilepsy
    Gollas, Frank
    Tetzlaff, Ronald
    2009 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN, VOLS 1 AND 2, 2009, : 429 - +
  • [3] Reaction-diffusion systems in protein networks: Global existence and identification
    Yang, Insoon
    Tomlin, Claire J.
    SYSTEMS & CONTROL LETTERS, 2014, 74 : 50 - 57
  • [4] Influencers identification in complex networks through reaction-diffusion dynamics
    Iannelli, Flavio
    Mariani, Manuel S.
    Sokolov, Igor M.
    PHYSICAL REVIEW E, 2018, 98 (06)
  • [5] Modeling brain electrical activity in epilepsy by reaction-diffusion cellular neural networks
    Gollas, F
    Tetzlaff, R
    Bioengineered and Bioinspired Systems II, 2005, 5839 : 219 - 227
  • [6] The diffusion identification in a SIS reaction-diffusion system
    Coronel, Anibal
    Huancas, Fernando
    Hess, Ian
    Tello, Alex
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 562 - 581
  • [7] Structural control of reaction-diffusion networks
    Xuan, Qi
    Du, Fang
    Dong, Hui
    Yu, Li
    Chen, Guanrong
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [8] Stochastic reaction-diffusion equations on networks
    Kovacs, M.
    Sikolya, E.
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 4213 - 4260
  • [9] From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy
    Wendling, Fabrice
    Chauvel, Patrick
    Biraben, Arnaud
    Bartolomei, Fabrice
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2010, 4
  • [10] A Patient Specific Neural Networks (MLP) for Optimization of Fuzzy Outputs in Classification of Epilepsy Risk Levels from EEG Signals
    Sukanesh, R.
    Harikumar, R.
    ENGINEERING LETTERS, 2006, 13 (02)