Identification of EEG signals in epilepsy by cell outputs of Reaction-Diffusion Networks

被引:0
|
作者
Gollas, F. [1 ]
Tetzlaff, R. [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Appl Phys, D-6000 Frankfurt, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cellular Nonlinear Networks (CNN) are characterized by local couplings of comparatively simple dynamical systems. In spite their compact structure, CNN exhibit complex phenomena like nonlinear wave propagation or chaotic behavior. The well studied Reaction-Diffusion Systems are widely used to describe phenomena like pattern formation and other processes in the fields of biology, chemistry and physics. By spatial discretization Reaction-Diffusion Partial Differential equations can be mapped to the cellular structures of Reaction-Diffusion Cellular Nonlinear Networks (RD-CNN). In this contribution simple RD-CNN models are determined in numerical optimization procedures in order to approximate short segments of EEG signals. Thereby effects of higher order nonlinear cell couplings are studied. Parameter changes of the RD-CNN models may be used for precursor detection of impending seizures in epilepsy.
引用
收藏
页码:5185 / 5188
页数:4
相关论文
共 50 条
  • [31] Reaction-diffusion processes on small-world networks
    Chang, KH
    Kim, K
    Yum, MK
    Choi, JS
    Odagaki, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (10) : 2860 - 2861
  • [32] Reaction-diffusion processes in scale-free networks
    Gallos, LK
    Argyrakis, P
    NOISE IN COMPLEX SYSTEMS AND STOCHASTIC DYNAMICS, 2003, 5114 : 118 - 125
  • [33] The linear noise approximation for reaction-diffusion systems on networks
    Malbor Asllani
    Tommaso Biancalani
    Duccio Fanelli
    Alan J. McKane
    The European Physical Journal B, 2013, 86
  • [34] Turing instability in reaction-diffusion models on complex networks
    Ide, Yusuke
    Izuhara, Hirofumi
    Machida, Takuya
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 457 : 331 - 347
  • [35] Chemical reaction-diffusion networks: convergence of the method of lines
    Fatma Mohamed
    Casian Pantea
    Adrian Tudorascu
    Journal of Mathematical Chemistry, 2018, 56 : 30 - 68
  • [36] Neural networks and reaction-diffusion systems with prescribed dynamics
    Vakulenko, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (05): : 509 - 513
  • [37] Synchronization of delayed coupled reaction-diffusion systems on networks
    Li, Wenxue
    Chen, Tianrui
    Xu, Dianguo
    Wang, Ke
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (11) : 2216 - 2228
  • [38] Emergence of heterogeneous structures in chemical reaction-diffusion networks
    Xuan, Qi
    Du, Fang
    Wu, Tie-Jun
    Chen, Guanrong
    PHYSICAL REVIEW E, 2010, 82 (04):
  • [39] Pattern invariance for reaction-diffusion systems on complex networks
    Giulia Cencetti
    Pau Clusella
    Duccio Fanelli
    Scientific Reports, 8
  • [40] Engineering reaction-diffusion networks with properties of neural tissue
    Litschel, Thomas
    Norton, Michael M.
    Tserunyan, Vardges
    Fraden, Seth
    LAB ON A CHIP, 2018, 18 (05) : 714 - 722