Reducing non-stationary stochastic processes to stationarity by a time deformation

被引:27
|
作者
Perrin, O [1 ]
Senoussi, R [1 ]
机构
[1] INRA, F-84914 Avignon 9, France
关键词
correlation function; stationary reducibility; weak stationarity;
D O I
10.1016/S0167-7152(98)00278-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A necessary and sufficient condition is given to reduce a non-stationary random process {Z(t): t is an element of T subset of or equal to R} to stationarity via a bijective differentiable time deformation Phi so that its correlation function r(t,t') depends only on the difference Phi(t') - Phi(t) through a stationary correlation function R: r(t,t') = R(Phi(t') - Phi(t)). (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:393 / 397
页数:5
相关论文
共 50 条
  • [31] Generalization Bounds for Time Series Prediction with Non-stationary Processes
    Kuznetsov, Vitaly
    Mohri, Mehryar
    [J]. ALGORITHMIC LEARNING THEORY (ALT 2014), 2014, 8776 : 260 - 274
  • [32] Stochastic Modeling of Non-Stationary Channels
    Gligorevic, Snjezana
    [J]. 2013 7TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2013, : 1677 - 1681
  • [33] Estimation of evolutionary spectra for simulation of non-stationary and non-Gaussian stochastic processes
    Shields, M. D.
    Deodatis, G.
    [J]. COMPUTERS & STRUCTURES, 2013, 126 : 149 - 163
  • [34] Modeling Non-stationary Stochastic Systems with Generalized Time Series Models
    Zhang, JingWen
    Chen, Li
    Qin, Pan
    [J]. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2015, : 1061 - 1067
  • [35] Time Complexity Analysis of Distributed Stochastic Optimization in a Non-Stationary Environment
    Bharath, B. N.
    Vaishali, P.
    [J]. 2017 15TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), 2017,
  • [36] An Entropy Measure of Non-Stationary Processes
    Liu, Ling Feng
    Hu, Han Ping
    Deng, Ya Shuang
    Ding, Nai Da
    [J]. ENTROPY, 2014, 16 (03) : 1493 - 1500
  • [37] Operatorial non-stationary harmonizable processes
    Valusescu, I
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 695 - 696
  • [40] SUPERIMPOSED NON-STATIONARY RENEWAL PROCESSES
    BLUMENTHAL, S
    GREENWOO.JA
    HERBACH, L
    [J]. JOURNAL OF APPLIED PROBABILITY, 1971, 8 (01) : 184 - +