An Entropy Measure of Non-Stationary Processes

被引:14
|
作者
Liu, Ling Feng [1 ]
Hu, Han Ping [1 ]
Deng, Ya Shuang [1 ]
Ding, Nai Da [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
non-stationary process; entropy; maximum entropy; cryptography;
D O I
10.3390/e16031493
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Shannon's source entropy formula is not appropriate to measure the uncertainty of non-stationary processes. In this paper, we propose a new entropy measure for non-stationary processes, which is greater than or equal to Shannon's source entropy. The maximum entropy of the non-stationary process has been considered, and it can be used as a design guideline in cryptography.
引用
收藏
页码:1493 / 1500
页数:8
相关论文
共 50 条
  • [1] STATIONARY OPERATOR FOR NON-STATIONARY PROCESSES
    ZUBAREV, DN
    [J]. DOKLADY AKADEMII NAUK SSSR, 1965, 164 (03): : 537 - &
  • [2] MAXIMUM NON-EXTENSIVE ENTROPY BLOCK BOOTSTRAP FOR NON-STATIONARY PROCESSES
    Bergamelli, Michele
    Novotny, Jan
    Urga, Giovanni
    [J]. ACTUALITE ECONOMIQUE, 2015, 91 (1-2): : 115 - 139
  • [3] Dynamics of non-stationary processes that follow the maximum of the Renyi entropy principle
    Shalymov, Dmitry S.
    Fradkov, Alexander L.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2185):
  • [4] Hausdorff Measure of Space Anisotropic Gaussian Processes with Non-stationary Increments
    Jun WANG
    Zhenlong CHEN
    Weijie YUAN
    Guangjun SHEN
    [J]. Acta Mathematicae Applicatae Sinica, 2025, 41 (01) : 114 - 132
  • [5] Surveillance of non-stationary processes
    Lazariv, Taras
    Schmid, Wolfgang
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (03) : 305 - 331
  • [6] NON-STATIONARY PROCESSES AND SPECTRUM
    NAGABHUSHANAM, K
    BHAGAVAN, CS
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (05): : 1203 - +
  • [7] ON PREDICTION OF NON-STATIONARY PROCESSES
    ABDRABBO, NA
    PRIESTLE.MB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1967, 29 (03) : 570 - &
  • [8] Predicting non-stationary processes
    Ryabko, Daniil
    Hutter, Marcus
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (05) : 477 - 482
  • [9] Surveillance of non-stationary processes
    Taras Lazariv
    Wolfgang Schmid
    [J]. AStA Advances in Statistical Analysis, 2019, 103 : 305 - 331
  • [10] Dynamics of non-stationary nonlinear processes that follow the maximum of differential entropy principle
    Fradkov, Alexander L.
    Shalymov, Dmitry S.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 29 (1-3) : 488 - 498