Resampling-based efficient shrinkage method for non-smooth minimands

被引:1
|
作者
Xu, Jinfeng [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
关键词
accelerated failure time model; adaptive lasso; lars; lasso; maximum rank correlation; quantile regression; resampling; variable selection; VARIABLE SELECTION; REGRESSION SHRINKAGE; ADAPTIVE LASSO; MODEL;
D O I
10.1080/10485252.2013.797977
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many regression models, the coefficients are typically estimated by optimising an objective function with a U-statistic structure. Under such a setting, we propose a simple and general method for simultaneous coefficient estimation and variable selection. It combines an efficient quadratic approximation of the objective function with the adaptive lasso penalty to yield a piecewise-linear regularisation path which can be easily obtained from the fast lars-lasso algorithm. Furthermore, the standard asymptotic oracle properties can be established under general conditions without requiring the covariance assumption (Wang, H., and Leng, C. (2007), Unified Lasso Estimation by Least Squares Approximation', Journal of the American Statistical Association, 102, 1039-1048). This approach applies to many semiparametric regression problems. Three examples are used to illustrate the practical utility of our proposal. Numerical results based on simulated and real data are provided.
引用
收藏
页码:731 / 743
页数:13
相关论文
共 50 条
  • [31] Melnikov Method and Detection of Chaos for Non-smooth Systems
    Shi, Lin-song
    Zou, Yong-kui
    Kuepper, Tassilo
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (04): : 881 - 896
  • [32] Subspace tracking method for non-smooth yield surface
    Li, Chunguang
    Li, Cuihua
    Zheng, Hong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 90 : 125 - 134
  • [33] Non-smooth dynamics for an efficient simulation of the grand piano action
    Thorin, Anders
    Boutillon, Xavier
    Lozada, Jose
    Merlhiot, Xavier
    MECCANICA, 2017, 52 (11-12) : 2837 - 2854
  • [34] Melnikov Method and Detection of Chaos for Non-smooth Systems
    Linsong SHI
    Yongkui ZOU
    Tassilo Kpper
    Acta Mathematicae Applicatae Sinica(English Series), 2013, 29 (04) : 881 - 896
  • [35] A high order method for non-smooth Fredholm equations
    Shi J.
    Lin Q.
    Acta Mathematicae Applicatae Sinica, 1997, 13 (1) : 17 - 22
  • [36] A quasi-Newton method for non-smooth equations
    Corradi, G
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (05) : 573 - 581
  • [37] Non-smooth dynamics for an efficient simulation of the grand piano action
    Anders Thorin
    Xavier Boutillon
    José Lozada
    Xavier Merlhiot
    Meccanica, 2017, 52 : 2837 - 2854
  • [38] Melnikov method and detection of chaos for non-smooth systems
    Lin-song Shi
    Yong-kui Zou
    Tassilo Küpper
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 881 - 896
  • [39] An Efficient Algorithm for Minimizing Multi Non-Smooth Component Functions
    Pham, Minh
    Ninh, Anh
    Le, Hoang
    Liu, Yufeng
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (01) : 162 - 170
  • [40] Detecting which variables alter component interpretation across multiple groups: A resampling-based method
    Gvaladze, Sopiko
    De Roover, Kim
    Tuerlinckx, Francis
    Ceulemans, Eva
    BEHAVIOR RESEARCH METHODS, 2020, 52 (01) : 236 - 263