Resampling-based efficient shrinkage method for non-smooth minimands

被引:1
|
作者
Xu, Jinfeng [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
关键词
accelerated failure time model; adaptive lasso; lars; lasso; maximum rank correlation; quantile regression; resampling; variable selection; VARIABLE SELECTION; REGRESSION SHRINKAGE; ADAPTIVE LASSO; MODEL;
D O I
10.1080/10485252.2013.797977
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many regression models, the coefficients are typically estimated by optimising an objective function with a U-statistic structure. Under such a setting, we propose a simple and general method for simultaneous coefficient estimation and variable selection. It combines an efficient quadratic approximation of the objective function with the adaptive lasso penalty to yield a piecewise-linear regularisation path which can be easily obtained from the fast lars-lasso algorithm. Furthermore, the standard asymptotic oracle properties can be established under general conditions without requiring the covariance assumption (Wang, H., and Leng, C. (2007), Unified Lasso Estimation by Least Squares Approximation', Journal of the American Statistical Association, 102, 1039-1048). This approach applies to many semiparametric regression problems. Three examples are used to illustrate the practical utility of our proposal. Numerical results based on simulated and real data are provided.
引用
收藏
页码:731 / 743
页数:13
相关论文
共 50 条
  • [21] An Efficient Approach to a Class of Non-smooth Optimization Problems
    李兴斯
    ScienceinChina,SerA., 1994, Ser.A.1994 (03) : 323 - 330
  • [22] An Efficient Sampling Algorithm for Non-smooth Composite Potentials
    Mou, Wenlong
    Flammarion, Nicolas
    Wainwright, Martin J.
    Bartlett, Peter L.
    Journal of Machine Learning Research, 2022, 23
  • [23] An efficient primal-dual method for solving non-smooth machine learning problem
    Lyaqini, S.
    Nachaoui, M.
    Hadri, A.
    CHAOS SOLITONS & FRACTALS, 2022, 155
  • [24] Smooth approximation method for non-smooth empirical risk minimization based distance metric learning
    Shi, Ya
    Ji, Hongbing
    NEUROCOMPUTING, 2014, 127 : 135 - 143
  • [25] Identification of delaminations based on non-smooth vibrations
    Mueller, I.
    Vielsack, P.
    Structural Dynamics - EURODYN 2005, Vols 1-3, 2005, : 1429 - 1434
  • [26] Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data
    Stefano Monti
    Pablo Tamayo
    Jill Mesirov
    Todd Golub
    Machine Learning, 2003, 52 : 91 - 118
  • [27] Melnikov Method and Detection of Chaos for Non-smooth Systems
    Lin-song SHI
    Yong-kui ZOU
    Tassilo Küpper
    Acta Mathematicae Applicatae Sinica, 2013, (04) : 881 - 896
  • [28] A memory gradient method for non-smooth convex optimization
    Ou, Yigui
    Liu, Yuanwen
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (08) : 1625 - 1642
  • [29] Computing non-smooth minimizers with the mesh transformation method
    Zhou, JS
    Li, ZP
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (03) : 458 - 472
  • [30] The index calculus method using non-smooth polynomials
    Garefalakis, T
    Panario, D
    MATHEMATICS OF COMPUTATION, 2001, 70 (235) : 1253 - 1264