Classification of self dual quadratic bent functions

被引:15
|
作者
Hou, Xiang-Dong [1 ]
机构
[1] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
关键词
Alternating matrix; Bent function; Orthogonal group; Quadratic function; Self dual bent function; Symplectic group; ORTHOGONAL MATRICES; CODES;
D O I
10.1007/s10623-011-9544-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We classify all self dual and anti self dual quadratic bent functions in 2n variables under the action of the orthogonal group O(2n, F-2). This is done through a classification of all 2nx2n involutory alternating matrices over F2 under the action of the orthogonal group. The sizes of the O(2n, F-2)-orbits of self dual and anti self dual quadratic bent functions are determined explicitly.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 50 条
  • [41] Classification of Balanced Quadratic Functions
    De Meyer, Lauren
    Bilgin, Begul
    IACR TRANSACTIONS ON SYMMETRIC CRYPTOLOGY, 2019, 2019 (02) : 169 - 192
  • [42] A classification of quadratic vector functions
    Hitchcock, FL
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1915, 1 : 177 - 183
  • [43] Quadratic bent and semi-bent functions over finite fields of odd characteristic
    Zheng, Dabin, 1600, Chinese Institute of Electronics (23):
  • [44] Quadratic Bent and Semi-bent Functions over Finite Fields of Odd Characteristic
    Zheng Dabin
    Yu Long
    Hu Lei
    CHINESE JOURNAL OF ELECTRONICS, 2014, 23 (04) : 767 - 772
  • [45] Quadratic Bent and Semi-bent Functions over Finite Fields of Odd Characteristic
    ZHENG Dabin
    YU Long
    HU Lei
    ChineseJournalofElectronics, 2014, 23 (04) : 767 - 772
  • [46] MacWilliams duality and a Gleason-type theorem on self-dual bent functions
    Hyun, Jong Yoon
    Lee, Heisook
    Lee, Yoonjin
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 63 (03) : 295 - 304
  • [47] Several new classes of self-dual bent functions derived from involutions
    Gaojun Luo
    Xiwang Cao
    Sihem Mesnager
    Cryptography and Communications, 2019, 11 : 1261 - 1273
  • [48] Several new classes of self-dual bent functions derived from involutions
    Luo, Gaojun
    Cao, Xiwang
    Mesnager, Sihem
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (06): : 1261 - 1273
  • [49] Bent functions satisfying the dual bent condition and permutations with the (Am) property
    Polujan, Alexandr
    Pasalic, Enes
    Kudin, Sadmir
    Zhang, Fengrong
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2024, : 1235 - 1256
  • [50] The Hamming Distance Spectrum Between Self-Dual Maiorana–McFarland Bent Functions
    Kutsenko A.V.
    Journal of Applied and Industrial Mathematics, 2018, 12 (1) : 112 - 125