Classification of self dual quadratic bent functions

被引:15
|
作者
Hou, Xiang-Dong [1 ]
机构
[1] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
关键词
Alternating matrix; Bent function; Orthogonal group; Quadratic function; Self dual bent function; Symplectic group; ORTHOGONAL MATRICES; CODES;
D O I
10.1007/s10623-011-9544-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We classify all self dual and anti self dual quadratic bent functions in 2n variables under the action of the orthogonal group O(2n, F-2). This is done through a classification of all 2nx2n involutory alternating matrices over F2 under the action of the orthogonal group. The sizes of the O(2n, F-2)-orbits of self dual and anti self dual quadratic bent functions are determined explicitly.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 50 条
  • [31] There Are Infinitely Many Bent Functions for Which the Dual Is Not Bent
    Cesmelioglu, Ayca
    Meidl, Wilfried
    Pott, Alexander
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (09) : 5204 - 5208
  • [32] Discovering Rotation Symmetric Self-dual Bent Functions with Evolutionary Algorithms
    Carlet, Claude
    Durasevic, Marko
    Jakobovic, Domagoj
    Picek, Stjepan
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT IV, PPSN 2024, 2024, 15151 : 429 - 445
  • [33] ON DECOMPOSITION OF A DUAL BENT FUNCTION INTO SUM OF TWO BENT FUNCTIONS
    Tokareva, N. N.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2014, 26 (04): : 59 - +
  • [34] New Classes of Quadratic Bent Functions in Polynomial Forms
    Wu, Baofeng
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1832 - 1836
  • [35] Constructions of Quadratic and Cubic Rotation Symmetric Bent Functions
    Gao, Guangpu
    Zhang, Xiyong
    Liu, Wenfen
    Carlet, Claude
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (07) : 4908 - 4913
  • [36] Gold and Kasami-Welch functions, quadratic forms, and bent functions
    Lahtonen, Jyrki
    McGuire, Gary
    Ward, Harold N.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2007, 1 (02) : 243 - 250
  • [37] Constructions of p-ary quadratic bent functions
    Li, Shenghua
    Hu, Lei
    Zeng, Xiangyong
    ACTA APPLICANDAE MATHEMATICAE, 2008, 100 (03) : 227 - 245
  • [38] Constructions of quadratic bent functions over finite fields
    Zhang, Feng-Rong
    Hu, Yu-Pu
    Xie, Min
    Gao, Jun-Tao
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2010, 33 (03): : 52 - 56
  • [39] Constructions of p-ary Quadratic Bent Functions
    Shenghua Li
    Lei Hu
    Xiangyong Zeng
    Acta Applicandae Mathematicae, 2008, 100 : 227 - 245
  • [40] New Constructions of Quadratic Bent Functions in Polynomial Form
    Li, Nian
    Tang, Xiaohu
    Helleseth, Tor
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (09) : 5760 - 5767