Classification of self dual quadratic bent functions

被引:15
|
作者
Hou, Xiang-Dong [1 ]
机构
[1] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
关键词
Alternating matrix; Bent function; Orthogonal group; Quadratic function; Self dual bent function; Symplectic group; ORTHOGONAL MATRICES; CODES;
D O I
10.1007/s10623-011-9544-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We classify all self dual and anti self dual quadratic bent functions in 2n variables under the action of the orthogonal group O(2n, F-2). This is done through a classification of all 2nx2n involutory alternating matrices over F2 under the action of the orthogonal group. The sizes of the O(2n, F-2)-orbits of self dual and anti self dual quadratic bent functions are determined explicitly.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 50 条
  • [1] Classification of self dual quadratic bent functions
    Xiang-Dong Hou
    Designs, Codes and Cryptography, 2012, 63 : 183 - 198
  • [2] Classification of p-ary self dual quadratic bent functions, p odd
    Hou, Xiang-dong
    JOURNAL OF ALGEBRA, 2013, 391 : 62 - 81
  • [3] Classification and Construction of quaternary self-dual bent functions
    Lin Sok
    MinJia Shi
    Patrick Solé
    Cryptography and Communications, 2018, 10 : 277 - 289
  • [4] Classification and Construction of quaternary self-dual bent functions
    Sok, Lin
    Shi, MinJia
    Sole, Patrick
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (02): : 277 - 289
  • [5] Towards the classification of self-dual bent functions in eight variables
    Feulner, Thomas
    Sok, Lin
    Sole, Patrick
    Wassermann, Alfred
    DESIGNS CODES AND CRYPTOGRAPHY, 2013, 68 (1-3) : 395 - 406
  • [6] Towards the classification of self-dual bent functions in eight variables
    Thomas Feulner
    Lin Sok
    Patrick Solé
    Alfred Wassermann
    Designs, Codes and Cryptography, 2013, 68 : 395 - 406
  • [7] ON THE DUAL OF (NON)-WEAKLY REGULAR BENT FUNCTIONS AND SELF-DUAL BENT FUNCTIONS
    Cesmelioglu, Ayca
    Meidl, Wilfried
    Pott, Alexander
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2013, 7 (04) : 425 - 440
  • [8] On the dual of monomial quadratic p-ary bent functions
    Helleseth, Tor
    Kholosha, Alexander
    SEQUENCES, SUBSEQUENCES, AND CONSEQUENCES, 2007, 4893 : 50 - 61
  • [9] Decomposing self-dual bent functions
    Kutsenko, Aleksandr
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (01) : 113 - 144
  • [10] Decomposing self-dual bent functions
    Aleksandr Kutsenko
    Designs, Codes and Cryptography, 2024, 92 (1) : 113 - 144