Effect of pre-processing on diagnostic performance of FDG PET using machine-learning for the detection of Alzheimer's disease: The Ishikawa Brain Imaging Study

被引:0
|
作者
Matsunari, Ichiro [1 ]
Samuraki, Miharu [2 ]
Komatsu, Junji [2 ]
Ono, Kenjiro [2 ]
Shinohara, Moeko [2 ]
Hamaguchi, Tsuyoshi [2 ]
Sakai, Kenji [2 ]
Yamada, Masahito [2 ]
Kinuya, Seigo [3 ]
机构
[1] Med & Pharmacol Res Ctr, Hakui, Japan
[2] Kanazawa Univ, Neurol & Neurobiol Aging, Kanazawa, Ishikawa, Japan
[3] Kanazawa Univ, Nucl Med, Kanazawa, Ishikawa, Japan
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
249
引用
收藏
页数:1
相关论文
共 50 条
  • [31] Classification of Alzheimer's Disease from 18F-FDG and 11C-PiB PET Imaging Biomarkers Using Support Vector Machine
    Yang, Bang-Hung
    Chen, Jyh-Cheng
    Chou, Wen-Hsiang
    Huang, Wen-Sheng
    Fuh, Jong-Ling
    Liu, Ren-Shyan
    Wu, Cheng-Han
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2020, 40 (04) : 545 - 554
  • [32] Classification of Alzheimer’s Disease from 18F-FDG and 11C-PiB PET Imaging Biomarkers Using Support Vector Machine
    Bang-Hung Yang
    Jyh-Cheng Chen
    Wen-Hsiang Chou
    Wen-Sheng Huang
    Jong-Ling Fuh
    Ren‑Shyan Liu
    Cheng-Han Wu
    Journal of Medical and Biological Engineering, 2020, 40 : 545 - 554
  • [33] A cross-sectional study of explainable machine learning in Alzheimer's disease: diagnostic classification using MR radiomic features
    Leandrou, Stephanos
    Lamnisos, Demetris
    Bougias, Haralabos
    Stogiannos, Nikolaos
    Georgiadou, Eleni
    Achilleos, K. G. S.
    Pattichis, Constantinos S.
    Alzheimers Dis Neuroimaging Initiat
    FRONTIERS IN AGING NEUROSCIENCE, 2023, 15
  • [34] Machine Learning for the Classification of Alzheimer's Disease and Its Prodromal Stage Using Brain Diffusion Tensor Imaging Data: A Systematic Review
    Billeci, Lucia
    Badolato, Asia
    Bachi, Lorenzo
    Tonacci, Alessandro
    PROCESSES, 2020, 8 (09)
  • [35] Machine Learning to Predict Brain Amyloid Pathology in Pre-dementia Alzheimer's Disease Using QEEG Features and Genetic Algorithm Heuristic
    Kim, Nam Heon
    Yang, Dong Won
    Choi, Seong Hye
    Kang, Seung Wan
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2021, 15
  • [36] A robust machine learning approach for multiclass Alzheimer's disease detection using 3D brain magnetic resonance images
    Reddy, G. Nagarjuna
    Nagireddy, K.
    JOURNAL OF ENGINEERING RESEARCH, 2022, 10 (2A): : 82 - 94
  • [37] SVM based detection of a disease specific metabolic brain pattern in a rat model for Parkinson's disease using longitudinal 18F-FDG PET imaging
    Devrome, M.
    Crabbe, M.
    Baekelandt, V.
    Van Laere, K.
    Casteels, C.
    Koole, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 : S235 - S236
  • [38] Exploiting linguistic information from Nepali transcripts for early detection of Alzheimer's disease using natural language processing and machine learning techniques
    Adhikari, Surabhi
    Thapa, Surendrabikram
    Naseem, Usman
    Singh, Priyanka
    Huo, Huan
    Bharathy, Gnana
    Prasad, Mukesh
    INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES, 2022, 160
  • [39] Genome-Wide Association Study of Brain Alzheimer's Disease-Related Metabolic Decline as Measured by [18F] FDG-PET Imaging
    Wang, Rong-Ze
    Yang, Yu-Xiang
    Li, Hong-Qi
    Shen, Xue-Ning
    Chen, Shi-Dong
    Dong, Qiang
    Wang, Yi
    Yu, Jin-Tai
    JOURNAL OF ALZHEIMERS DISEASE, 2020, 77 (01) : 401 - 409
  • [40] Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning
    Zhang, Yudong
    Dong, Zhengchao
    Phillips, Preetha
    Wang, Shuihua
    Ji, Genlin
    Yang, Jiquan
    Yuan, Ti-Fei
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2015, 9