Effect of pre-processing on diagnostic performance of FDG PET using machine-learning for the detection of Alzheimer's disease: The Ishikawa Brain Imaging Study

被引:0
|
作者
Matsunari, Ichiro [1 ]
Samuraki, Miharu [2 ]
Komatsu, Junji [2 ]
Ono, Kenjiro [2 ]
Shinohara, Moeko [2 ]
Hamaguchi, Tsuyoshi [2 ]
Sakai, Kenji [2 ]
Yamada, Masahito [2 ]
Kinuya, Seigo [3 ]
机构
[1] Med & Pharmacol Res Ctr, Hakui, Japan
[2] Kanazawa Univ, Neurol & Neurobiol Aging, Kanazawa, Ishikawa, Japan
[3] Kanazawa Univ, Nucl Med, Kanazawa, Ishikawa, Japan
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
249
引用
收藏
页数:1
相关论文
共 50 条
  • [21] Detection of Alzheimer's disease onset using MRI and PET neuroimaging:longitudinal data analysis and machine learning
    Iroshan Aberathne
    Don Kulasiri
    Sandhya Samarasinghe
    Neural Regeneration Research, 2023, (10) : 2134 - 2140
  • [22] Radiomics Analysis of Brain [18F]FDG PET/CT to Predict Alzheimer's Disease in Patients with Amyloid PET Positivity: A Preliminary Report on the Application of SPM Cortical Segmentation, Pyradiomics and Machine-Learning Analysis
    Alongi, Pierpaolo
    Laudicella, Riccardo
    Panasiti, Francesco
    Stefano, Alessandro
    Comelli, Albert
    Giaccone, Paolo
    Arnone, Annachiara
    Minutoli, Fabio
    Quartuccio, Natale
    Cupidi, Chiara
    Arnone, Gaspare
    Piccoli, Tommaso
    Grimaldi, Luigi Maria Edoardo
    Baldari, Sergio
    Russo, Giorgio
    DIAGNOSTICS, 2022, 12 (04)
  • [23] Corpus Callosum Atrophy in Detection of Mild and Moderate Alzheimer's Disease Using Brain Magnetic Resonance Image Processing and Machine Learning Techniques
    Das, Subhrangshu
    Panigrahi, Priyanka
    Chakrabarti, Saikat
    JOURNAL OF ALZHEIMERS DISEASE REPORTS, 2021, 5 (01) : 771 - 788
  • [24] PET-validated EEG-machine learning algorithm predicts brain amyloid pathology in pre-dementia Alzheimer’s disease
    Nam Heon Kim
    Ukeob Park
    Dong Won Yang
    Seong Hye Choi
    Young Chul Youn
    Seung Wan Kang
    Scientific Reports, 13
  • [25] PET-validated EEG-machine learning algorithm predicts brain amyloid pathology in pre-dementia Alzheimer's disease
    Kim, Nam Heon
    Park, Ukeob
    Yang, Dong Won
    Choi, Seong Hye
    Youn, Young Chul
    Kang, Seung Wan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [26] Combining ADAS-Cog Assessment with Hypometabolic Region of 18F-FDG PET/CT Brain Imaging for Alzheimer's Disease Detection
    Aziz, Siti Aishah Abdul
    Saripan, M. Iqbal
    Ibrahim, Normala
    Saad, Fathinul Fikri Ahmad
    Suppiah, Subapriya
    Ismail, Siti Irma Fadhilah
    Razali, Rizah Mazzuin
    2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, : 166 - 171
  • [27] Effect of Point Spread Function Deconvolution in Reconstruction of Brain 18F-FDG PET Images on the Diagnostic Thinking Efficacy in Alzheimer's Disease
    Doyen, Matthieu
    Mairal, Elise
    Bordonne, Manon
    Zaragori, Timothee
    Roch, Veronique
    Imbert, Laetitia
    Verger, Antoine
    FRONTIERS IN MEDICINE, 2021, 8
  • [28] RETRACTED: Machine Learning and Image Processing Enabled Evolutionary Framework for Brain MRI Analysis for Alzheimer's Disease Detection (Retracted Article)
    Kamal, Mustafa
    Pratap, A. Raghuvira
    Naved, Mohd
    Zamani, Abu Sarwar
    Nancy, P.
    Ritonga, Mahyudin
    Shukla, Surendra Kumar
    Sammy, F.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [29] Monitoring Alzheimer's Disease Progression in Mild Cognitive Impairment Stage Using Machine Learning-Based FDG-PET Classification Methods
    Beheshti, Iman
    Geddert, Natasha
    Perron, Jarrad
    Gupta, Vinay
    Albensi, Benedict C.
    Ko, Ji Hyun
    JOURNAL OF ALZHEIMERS DISEASE, 2022, 89 (04) : 1493 - 1502
  • [30] The effectiveness of data pre-processing methods on the performance of machine learning techniques using RF, SVR, Cubist and SGB: a study on undrained shear strength prediction
    Demir, Selcuk
    Sahin, Emrehan Kutlug
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2024, 38 (08) : 3273 - 3290