CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes

被引:40
|
作者
Zhang, Quan [1 ]
Rho, Mina [2 ]
Tang, Haixu [1 ,3 ]
Doak, Thomas G. [4 ]
Ye, Yuzhen [1 ]
机构
[1] Indiana Univ, Sch Informat & Comp, Bloomington, IN 47405 USA
[2] Roswell Pk Canc Inst, Dept Biostat & Bioinformat, Buffalo, NY 14263 USA
[3] Indiana Univ, Sch Informat & Comp, Ctr Genom & Bioinformat, Bloomington, IN 47405 USA
[4] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
来源
GENOME BIOLOGY | 2013年 / 14卷 / 04期
基金
美国国家科学基金会;
关键词
CRISPR-Cas system; human microbiome; mobile genetic element (MGE); PROVIDES ACQUIRED-RESISTANCE; GENOMIC ISLANDS; IMMUNE-SYSTEM; RNA; BACTERIA; SEQUENCE; IDENTIFICATION; INTERFERENCE; PREDICTION; DATABASE;
D O I
10.1186/gb-2013-14-4-r40
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Bacteria and archaea develop immunity against invading genomes by incorporating pieces of the invaders' sequences, called spacers, into a clustered regularly interspaced short palindromic repeats (CRISPR) locus between repeats, forming arrays of repeat-spacer units. When spacers are expressed, they direct CRISPR-associated (Cas) proteins to silence complementary invading DNA. In order to characterize the invaders of human microbiomes, we use spacers from CRISPR arrays that we had previously assembled from shotgun metagenomic datasets, and identify contigs that contain these spacers' targets. Results: We discover 95,000 contigs that are putative invasive mobile genetic elements, some targeted by hundreds of CRISPR spacers. We find that oral sites in healthy human populations have a much greater variety of mobile genetic elements than stool samples. Mobile genetic elements carry genes encoding diverse functions: only 7% of the mobile genetic elements are similar to known phages or plasmids, although a much greater proportion contain phage-or plasmid-related genes. A small number of contigs share similarity with known integrative and conjugative elements, providing the first examples of CRISPR defenses against this class of element. We provide detailed analyses of a few large mobile genetic elements of various types, and a relative abundance analysis of mobile genetic elements and putative hosts, exploring the dynamic activities of mobile genetic elements in human microbiomes. A joint analysis of mobile genetic elements and CRISPRs shows that protospacer-adjacent motifs drive their interaction network; however, some CRISPR-Cas systems target mobile genetic elements lacking motifs. Conclusions: We identify a large collection of invasive mobile genetic elements in human microbiomes, an important resource for further study of the interaction between the CRISPR-Cas immune system and invaders.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting
    Chen, Fuqiang
    Ding, Xiao
    Feng, Yongmei
    Seebeck, Timothy
    Jiang, Yanfang
    Davis, Gregory D.
    NATURE COMMUNICATIONS, 2017, 8
  • [22] Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting
    Fuqiang Chen
    Xiao Ding
    Yongmei Feng
    Timothy Seebeck
    Yanfang Jiang
    Gregory D. Davis
    Nature Communications, 8
  • [23] CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids
    Pinilla-Redondo, Rafael
    Russel, Jakob
    Mayo-Munoz, David
    Shah, Shiraz A.
    Garrett, Roger A.
    Nesme, Joseph
    Madsen, Jonas S.
    Fineran, Peter C.
    Sorensen, Soren J.
    NUCLEIC ACIDS RESEARCH, 2022, 50 (08) : 4315 - 4328
  • [24] Fluorescence-based methods for measuring target interference by CRISPR-Cas systems
    Phan, Phong T.
    Schelling, Michael
    Xue, Chaoyou
    Sashital, Dipali G.
    CRISPR-CAS ENZYMES, 2019, 616 : 61 - 85
  • [25] CRISPR-Cas systems preferentially target the leading regions of MOBF conjugative plasmids
    Westra, Edze R.
    Staals, Raymond H. J.
    Gort, Gerrit
    Hogh, Soren
    Neumann, Sarah
    de la Cruz, Fernando
    Fineran, Peter C.
    Brouns, Stan J. J.
    RNA BIOLOGY, 2013, 10 (05) : 749 - 761
  • [26] Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors
    Al-Shayeb, Basem
    Skopintsev, Petr
    Soczek, Katarzyna M.
    Stahl, Elizabeth C.
    Li, Zheng
    Groover, Evan
    Smock, Dylan
    Eggers, Amy R.
    Pausch, Patrick
    Cress, Brady F.
    Huang, Carolyn J.
    Staskawicz, Brian
    Savage, David F.
    Jacobsen, Steven E.
    Banfield, Jillian F.
    Doudna, Jennifer A.
    CELL, 2022, 185 (24) : 4574 - +
  • [27] Adaptation by Type V-A and V-B CRISPR-Cas Systems Demonstrates Conserved Protospacer Selection Mechanisms Between Diverse CRISPR-Cas Types
    Wu, Wen Y.
    Jackson, Simon A.
    Almendros, Cristobal
    Haagsma, Anna C.
    Yilmaz, Suzan
    Gort, Gerrit
    van der Oost, John
    Brouns, Stan J. J.
    Staals, Raymond H. J.
    CRISPR JOURNAL, 2022, 5 (04): : 536 - 547
  • [28] CRISPR–Cas in mobile genetic elements: counter-defence and beyond
    Guilhem Faure
    Sergey A. Shmakov
    Winston X. Yan
    David R. Cheng
    David A. Scott
    Joseph E. Peters
    Kira S. Makarova
    Eugene V. Koonin
    Nature Reviews Microbiology, 2019, 17 : 513 - 525
  • [29] CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems
    Jiang, Wenyan
    Marraffini, Luciano A.
    ANNUAL REVIEW OF MICROBIOLOGY, VOL 69, 2015, 69 : 209 - 228
  • [30] CRISPR-Cas adaptive immune systems in Sulfolobales: genetic studies and molecular mechanisms
    Yu, Zhenxiao
    Jiang, Suping
    Wang, Yuan
    Tian, Xuhui
    Zhao, Pengpeng
    Xu, Jianan
    Feng, Mingxia
    She, Qunxin
    SCIENCE CHINA-LIFE SCIENCES, 2021, 64 (05) : 678 - 696