Adaptation by Type V-A and V-B CRISPR-Cas Systems Demonstrates Conserved Protospacer Selection Mechanisms Between Diverse CRISPR-Cas Types

被引:0
|
作者
Wu, Wen Y. [1 ]
Jackson, Simon A. [2 ]
Almendros, Cristobal [3 ,4 ]
Haagsma, Anna C. [3 ,4 ]
Yilmaz, Suzan [1 ]
Gort, Gerrit [5 ]
van der Oost, John [1 ]
Brouns, Stan J. J. [3 ,4 ]
Staals, Raymond H. J. [1 ]
机构
[1] Wageningen Univ & Res, Lab Microbiol, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
[2] Univ Otago, Dept Microbiol & Immunol, Dunedin, New Zealand
[3] Delft Univ Technol, Dept Bionanosci, Delft, Netherlands
[4] Kavli Inst Nanosci, Delft, Netherlands
[5] Wageningen Univ & Res, Biometris, Wageningen, Netherlands
来源
CRISPR JOURNAL | 2022年 / 5卷 / 04期
基金
欧洲研究理事会;
关键词
SPACER ACQUISITION; PAM; EVOLUTION; ALIGNMENT; TARGETS;
D O I
10.1089/crispr.2021.0150
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Adaptation of clustered regularly interspaced short palindromic repeats (CRISPR) arrays is a crucial process responsible for the unique, adaptive nature of CRISPR-Cas immune systems. The acquisition of new CRISPR spacers from mobile genetic elements has previously been studied for several types of CRISPR-Cas systems. In this study, we used a high-throughput sequencing approach to characterize CRISPR adaptation of the type V-A system from Francisella novicida and the type V-B system from Alicyclobacillus acidoterrestris. In contrast to other class 2 CRISPR-Cas systems, we found that for the type V-A and V-B systems, the Cas12 nucleases are dispensable for spacer acquisition, with only Cas1 and Cas2 (type V-A) or Cas4/1 and Cas2 (type V-B) being necessary and sufficient. Whereas the catalytic activity of Cas4 is not essential for adaptation, Cas4 activity is required for correct protospacer adjacent motif selection in both systems and for prespacer trimming in type V-A. In addition, we provide evidence for acquisition of RecBCD-produced DNA fragments by both systems, but with spacers derived from foreign DNA being incorporated preferentially over those derived from the host chromosome. Our work shows that several spacer acquisition mechanisms are conserved between diverse CRISPR-Cas systems, but also highlights unexpected nuances between similar systems that generally contribute to a bias of gaining immunity against invading genetic elements.
引用
收藏
页码:536 / 547
页数:12
相关论文
共 50 条
  • [1] Functionally diverse type V CRISPR-Cas systems
    Yan, Winston X.
    Hunnewell, Pratyusha
    Alfonse, Lauren E.
    Carte, Jason M.
    Keston-Smith, Elise
    Sothiselvam, Shanmugapriya
    Garrity, Anthony J.
    Chong, Shaorong
    Makarova, Kira S.
    Koonin, Eugene V.
    Cheng, David R.
    Scott, David A.
    [J]. SCIENCE, 2019, 363 (6422) : 88 - +
  • [2] Adaptation in CRISPR-Cas Systems
    Sternberg, Samuel H.
    Richter, Hagen
    Charpentier, Emmanuelle
    Qimron, Udi
    [J]. MOLECULAR CELL, 2016, 61 (06) : 797 - 808
  • [3] A scoutRNA Is Required for Some Type V CRISPR-Cas Systems
    Harrington, Lucas B.
    Ma, Enbo
    Chen, Janice S.
    Witte, Isaac P.
    Gertz, Dov
    Paez-Espino, David
    Al-Shayeb, Basem
    Kyrpides, Nikos C.
    Burstein, David
    Banfield, Jillian F.
    Doudna, Jennifer A.
    [J]. MOLECULAR CELL, 2020, 79 (03) : 416 - +
  • [4] Mechanisms regulating the CRISPR-Cas systems
    Zakrzewska, Marta
    Burmistrz, Michal
    [J]. FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [5] Discovery of widespread type I and type V CRISPR-Cas inhibitors
    Marino, Nicole D.
    Zhang, Jenny Y.
    Borges, Adair L.
    Sousa, Alexander A.
    Leon, Lina M.
    Rauch, Benjamin J.
    Walton, Russell T.
    Berry, Joel D.
    Joung, J. Keith
    Kleinstiver, Benjamin P.
    Bondy-Denomy, Joseph
    [J]. SCIENCE, 2018, 362 (6411) : 240 - 242
  • [6] Structure of the type V-C CRISPR-Cas effector enzyme
    Kurihara, Nina
    Nakagawa, Ryoya
    Hirano, Hisato
    Okazaki, Sae
    Tomita, Atsuhiro
    Kobayashi, Kan
    Kusakizako, Tsukasa
    Nishizawa, Tomohiro
    Yamashita, Keitaro
    Scott, David A.
    Nishimasu, Hiroshi
    Nureki, Osamu
    [J]. MOLECULAR CELL, 2022, 82 (10) : 1865 - +
  • [7] Molecular mechanisms of III-B CRISPR-Cas systems in archaea
    Zhang, Yan
    Lin, Jinzhong
    Feng, Mingxia
    She, Qunxin
    [J]. EMERGING TOPICS IN LIFE SCIENCES, 2018, 2 (04) : 483 - 491
  • [8] Classification and evolution of type II CRISPR-Cas systems
    Chylinski, Krzysztof
    Makarova, Kira S.
    Charpentier, Emmanuelle
    Koonin, Eugene V.
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (10) : 6091 - 6105
  • [9] Characterization and applications of Type I CRISPR-Cas systems
    Hidalgo-Cantabrana, Claudio
    Barrangou, Rodolphe
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2020, 48 (01) : 15 - 23
  • [10] Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
    Mohanraju, Prarthana
    Makarova, Kira S.
    Zetsche, Bernd
    Zhang, Feng
    Koonin, Eugene V.
    van der Oost, John
    [J]. SCIENCE, 2016, 353 (6299)