Adaptation by Type V-A and V-B CRISPR-Cas Systems Demonstrates Conserved Protospacer Selection Mechanisms Between Diverse CRISPR-Cas Types

被引:0
|
作者
Wu, Wen Y. [1 ]
Jackson, Simon A. [2 ]
Almendros, Cristobal [3 ,4 ]
Haagsma, Anna C. [3 ,4 ]
Yilmaz, Suzan [1 ]
Gort, Gerrit [5 ]
van der Oost, John [1 ]
Brouns, Stan J. J. [3 ,4 ]
Staals, Raymond H. J. [1 ]
机构
[1] Wageningen Univ & Res, Lab Microbiol, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
[2] Univ Otago, Dept Microbiol & Immunol, Dunedin, New Zealand
[3] Delft Univ Technol, Dept Bionanosci, Delft, Netherlands
[4] Kavli Inst Nanosci, Delft, Netherlands
[5] Wageningen Univ & Res, Biometris, Wageningen, Netherlands
来源
CRISPR JOURNAL | 2022年 / 5卷 / 04期
基金
欧洲研究理事会;
关键词
SPACER ACQUISITION; PAM; EVOLUTION; ALIGNMENT; TARGETS;
D O I
10.1089/crispr.2021.0150
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Adaptation of clustered regularly interspaced short palindromic repeats (CRISPR) arrays is a crucial process responsible for the unique, adaptive nature of CRISPR-Cas immune systems. The acquisition of new CRISPR spacers from mobile genetic elements has previously been studied for several types of CRISPR-Cas systems. In this study, we used a high-throughput sequencing approach to characterize CRISPR adaptation of the type V-A system from Francisella novicida and the type V-B system from Alicyclobacillus acidoterrestris. In contrast to other class 2 CRISPR-Cas systems, we found that for the type V-A and V-B systems, the Cas12 nucleases are dispensable for spacer acquisition, with only Cas1 and Cas2 (type V-A) or Cas4/1 and Cas2 (type V-B) being necessary and sufficient. Whereas the catalytic activity of Cas4 is not essential for adaptation, Cas4 activity is required for correct protospacer adjacent motif selection in both systems and for prespacer trimming in type V-A. In addition, we provide evidence for acquisition of RecBCD-produced DNA fragments by both systems, but with spacers derived from foreign DNA being incorporated preferentially over those derived from the host chromosome. Our work shows that several spacer acquisition mechanisms are conserved between diverse CRISPR-Cas systems, but also highlights unexpected nuances between similar systems that generally contribute to a bias of gaining immunity against invading genetic elements.
引用
收藏
页码:536 / 547
页数:12
相关论文
共 50 条
  • [31] The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems
    Chylinski, Krzysztof
    Le Rhun, Anais
    Charpentier, Emmanuelle
    [J]. RNA BIOLOGY, 2013, 10 (05) : 726 - 737
  • [32] Probing the Behaviour of Cas1-Cas2 upon Protospacer Binding in CRISPR-Cas Systems using Molecular Dynamics Simulations
    Hua Wan
    Jianming Li
    Shan Chang
    Shuoxin Lin
    Yuanxin Tian
    Xuhong Tian
    Meihua Wang
    Jianping Hu
    [J]. Scientific Reports, 9
  • [33] Probing the Behaviour of Cas1-Cas2 upon Protospacer Binding in CRISPR-Cas Systems using Molecular Dynamics Simulations
    Wan, Hua
    Li, Jianming
    Chang, Shan
    Lin, Shuoxin
    Tian, Yuanxin
    Tian, Xuhong
    Wang, Meihua
    Hu, Jianping
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [34] Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System
    Hoikkala, Ville
    Ravantti, Janne
    Diez-Villasenor, Cesar
    Tiirola, Marja
    Conrad, Rachel A.
    McBride, Mark J.
    Moineau, Sylvain
    Sundberg, Lotta-Riina
    [J]. MBIO, 2021, 12 (02):
  • [35] Structure and genome editing of type I-B CRISPR-Cas
    Lu, Meiling
    Yu, Chenlin
    Zhang, Yuwen
    Ju, Wenjun
    Ye, Zhi
    Hua, Chenyang
    Mao, Jinze
    Hu, Chunyi
    Yang, Zhenhuang
    Xiao, Yibei
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [36] Prediction and diversity of tracrRNAs from type II CRISPR-Cas systems
    Chyou, Te-yuan
    Brown, Chris M.
    [J]. RNA BIOLOGY, 2019, 16 (04) : 423 - 434
  • [37] Positioning Diverse Type IV Structures and Functions Within Class 1 CRISPR-Cas Systems
    Taylor, Hannah N.
    Laderman, Eric
    Armbrust, Matt
    Hallmark, Thomson
    Keiser, Dylan
    Bondy-Denomy, Joseph
    Jackson, Ryan N.
    [J]. FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [38] Type III-B CRISPR-Cas cascade of proteolytic cleavages
    Steens, Jurre A.
    Bravo, Jack P. K.
    Salazar, Carl Raymund P.
    Yildiz, Caglar
    Amieiro, Afonso M.
    Kostlbacher, Stephan
    Prinsen, Stijn H. P.
    Andres, Ane S.
    Patinios, Constantinos
    Bardis, Andreas
    Barendregt, Arjan
    Scheltema, Richard A.
    Ettema, Thijs J. G.
    van der Oost, John
    Taylor, David W.
    Staals, Raymond H. J.
    [J]. SCIENCE, 2024, 383 (6682) : 512 - 519
  • [39] Structural basis of CRISPR-Cas Type III prokaryotic defence systems
    Molina, Rafael
    Sofos, Nicholas
    Montoya, Guillermo
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2020, 65 : 119 - 129
  • [40] A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems
    Kazlauskiene, Migle
    Kostiuk, Georgij
    Venclovas, Ceslovas
    Tamulaitis, Gintautas
    Siksnys, Virginijus
    [J]. SCIENCE, 2017, 357 (6351) : 605 - +