The proportion of Weierstrass semigroups

被引:11
|
作者
Kaplan, Nathan [1 ]
Ye, Lynnelle [2 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Numerical semigroup; Weierstrass semigroup; Genus of numerical semigroup; Frobenius number; NUMERICAL SEMIGROUPS;
D O I
10.1016/j.jalgebra.2012.09.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve a problem of Komeda concerning the proportion of numerical semigroups which do not satisfy Buchweitz' necessary criterion for a semigroup to occur as the Weierstrass semigroup of a point on an algebraic curve. A result of Eisenbud and Harris gives a sufficient condition for a semigroup to occur as a Weierstrass semigroup. We show that the family of semigroups satisfying this condition has density zero in the set of all semigroups. In the process, we prove several more general results about the structure of a typical numerical semigroup. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:377 / 391
页数:15
相关论文
共 50 条
  • [41] WEIERSTRASS SEMIGROUPS OF PAIRS ON H-HYPERELLIPTIC CURVES
    Kang, Eunju
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2015, 22 (04): : 403 - 412
  • [42] Triples of rational points on the Hermitian curve and their Weierstrass semigroups
    Matthews, Gretchen L.
    Skabelund, Dane
    Wills, Michael
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (08)
  • [43] On the structure of numerical sparse semigroups and applications to Weierstrass points
    Contiero, Andre
    Moreira, Carlos Gustavo T. de A.
    Veloso, Paula M.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (09) : 3946 - 3957
  • [44] ON THE MODULI SPACES OF GORENSTEIN CURVES WITH SYMMETRICAL WEIERSTRASS SEMIGROUPS
    STOHR, KO
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1993, 441 : 189 - 213
  • [45] Non-K3 Weierstrass numerical semigroups
    Jiryo Komeda
    Makiko Mase
    Semigroup Forum, 2024, 108 : 145 - 164
  • [46] On Weierstrass semigroups of double coverings of genus three curves
    Jiryo Komeda
    Semigroup Forum, 2011, 83 : 479 - 488
  • [47] Weierstrass Semigroups from Cyclic Covers of Hyperelliptic Curves
    Cotterill, Ethan
    Pflueger, Nathan
    Zhang, Naizhen
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):
  • [48] WEIERSTRASS SEMIGROUPS AT PAIRS OF NON-WEIERSTRASS POINTS ON A SMOOTH PLANE CURVE OF DEGREE 5
    Cheon, Eun Ju
    Kim, Seon Jeong
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2020, 27 (04): : 251 - 267
  • [49] Weierstrass semigroups and codes from a quotient of the Hermitian curve
    Matthews, GL
    DESIGNS CODES AND CRYPTOGRAPHY, 2005, 37 (03) : 473 - 492
  • [50] Weierstrass semigroups whose minimum positive integers are even
    Komeda, Jiryo
    ARCHIV DER MATHEMATIK, 2007, 89 (01) : 52 - 59